Buch lesen: «Ошибки инноваторов, и как их избежать. ТРИЗ для чайников – 5, второе издание»
© Лев Хатевич Певзнер, 2024
ISBN 978-5-0064-6000-3 (т. 5)
ISBN 978-5-4493-8108-8
Создано в интеллектуальной издательской системе Ridero
От автора
Известна история, которую принято называть «ошибкой выжившего». Во время Второй мировой войны командование американских и британских ВВС поручило математику Абрахаму Вальду выяснить, какие части фюзеляжа самолета нужно защитить дополнительной броней. Вальд изучал самолеты, возвращавшиеся с боевых вылетов, отмечая места попаданий. В результате, он рекомендовал установить дополнительную защиту на те участки (центральную и заднюю части фюзеляжа), где количество пробоин было минимальным. Почему? Да очень просто – попадания снарядов в самолет в силу статистики должны были распределяться равномерно по всему корпусу самолета. Но те попадания, после которых самолеты возвращались, и которые Вальд видел, не были критичными. В то же время самолеты, получившие повреждения в других частях корпуса, вероятно, не возвращались, так как повреждения в этих местах были фатальными. Таким образом, Вальд рекомендовал укрепить именно те части самолета, где было меньше всего повреждений на вернувшихся самолетах.
Рисунок 1. Схема Вальда
Логика была следующей: если самолеты, возвращающиеся на базу, не имели повреждений в определенных частях корпуса, это могло означать, что самолеты, получившие пробоины в этих местах, не выживали. Следовательно, именно эти места нуждались в дополнительной защите.
Эта история прекрасно иллюстрирует концепцию «ошибки выжившего» – логической ошибки, заключающейся в том, что выводы делаются на основе данных от тех, кто «выжил», не учитывая тех, кто не «выжил». В данном случае, это привело бы к неправильному распределению брони на самолетах.
Почему-то в истории техники принято изучать рассказы об успешных изобретателях и инженерах. Однако, таких людей единицы, в то время как тех, кто потратил свою жизнь и сбережения, но не добился успеха – десятки и сотни тысяч. И если мы хотим добиться успеха, надо изучать их истории и понимать причины их провалов.
Почему-то в истории техники принято изучать рассказы об успешных изобретателях и инженерах. Однако, таких людей единицы, в то время как тех, кто потратил свою жизнь и сбережения, но не добился успеха – десятки и сотни тысяч. И если мы хотим добиться успеха, надо изучать их истории и понимать причины их провалов.
Изучать надо не мифы и легенды об успехах (в большинстве своем придуманные победителями), а огромный фонд ошибок и провалов, которые не позволили добиться успеха. Это сложно, об этом мало пишут, но именно этот анализ позволит успешно работать.
Я хочу выразить благодарность Якову Кацману, предоставившему ряд великолепных примеров из своего практического опыта и Борису Злотину за помощь в работе.
ВВЕДЕНИЕ
В ТРИЗ хорошо исследованы законы развития технических систем, а также основные линии и тенденции их эволюции. Следуя этим законам, можно достаточно быстро и эффективно развивать технические системы. Тем не менее, на практике мы постоянно сталкиваемся с ситуациями, когда развитие технических систем тормозится, а иногда и полностью останавливается, что приводит к краху бизнесов, основанные на них. Причины могут быть как объективные, так и субъективные. Ведь развитием системы занимаются не только ученые и инженеры, но и менеджеры-организаторы производства. И нередко их взгляды и стремления отличаются от оценок инженеров, и они навязывают инженерам свои «концепции» развития техники, которые заводят развитие в тупик. Особенно ярко это проявляется в тоталитарных режимах, когда лидеры бюрократии приказывают инженерам и конструкторам что и как делать (яркие примеры – Гитлер в Германии, Сталин в СССР). В таких случаях техника начинает развиваться по кривым путям, существенно уклоняясь от магистрального пути. Со временем все возвращается на круги своя, но теряется время и огромные ресурсы. Иногда ошибки стоят жизни целым компаниям и коллективам.
Рассматривая типовые ошибки, мы будем обращать внимание на причины их возникновения – как объективные, которых трудно избежать (но потери можно снизить), так и субъективные, связанные с психологической инерцией разработчика, ошибками менеджера-организатора. Последних можно избежать.
Основы методики исследования типовых ошибок при развитии технических систем заложил мастер ТРИЗ Борис Злотин около 30 лет назад. Он описал наиболее часто встречающиеся ошибки и их причины для разных этапов развития технической системы. Законы развития технических систем, разработанные к настоящему времени, в значительной степени изложены в книгах [1,2]. Сложность, многогранность и диалектичность процесса развития техники не позволили провести полное и законченное исследование по причинам возникновения ошибок в развитии технических систем.
Это второе издание книги, которое я существенно расширил и дополнил. Как и в первом издании, я постарался систематизировать и изложить материалы по типовых ошибкам в развитии технических систем, которые удалось собрать к настоящему времени.
ГЛАВА 1. Закон S-образного развития технической системы
Все технические системы развиваются по S-образной кривой. Положение технической системы на S-тесно связано ее финансированием, типом лидера, отношениями в коллективе и многими другими аспектами. Понимание места системы на S-кривой позволяет грамотно управлять ее развитием, инвестированием средств в ее развитие, модернизацией управленческой и производственной структуры, а также прогнозировать перспективы развития системы и строить планы. Мы не будем глубоко изучать закон S-образного развития в этой книге, но кратко опишем его, чтобы иметь базу, для отсчета отклонений и ошибок в развитии.
1.1. Как появляются новые технические системы
Известны два основных пути создания принципиально новых (пионерных, как их называл Г. Альтшуллер) технических систем:
– создание технической системы на основе открытия,
– создание новой технической системы путем гибридизации известных технических систем.
Рассмотрим эти два пути.
1.1.1. Изобретения, созданные на основе открытия
Под такими изобретениями понимается создание технических систем и технологий, которые:
– реализуют новые функции, которые ранее не существовали; это позволяет создать и удовлетворять новые потребности, которых ранее не было1;
или
– реализуют известные функции на основе нового принципа действия, что позволяет удовлетворять известные потребности на качественно более высоком уровне.
Создание таких систем всегда является основой для появления новых направлений в технике, и даже новых отраслей промышленности. Зачастую они вызывают существенные изменения в обществе. Такие изобретения всегда открывают новые S-кривые.
Пример
Рентгеноскопия
Главное открытие в своей жизни Конрад Рентген сделал 8 ноября 1895 года. Работая в своей лаборатории, он заметил, что после включения тока в катодной трубке начинает светиться покрытый слоем платиноцианистого бария бумажный экран. Это происходило вопреки здравому смыслу, поскольку трубка была полностью закрыта плотным черным картоном, и свет не мог проходить через него. Когда рентген выключил ток, свечение прекратилось, а при включении тока экран снова засветился! Он сделал вывод, что в трубке возникают икс-лучи, способные проходить через плотный материал
Рисунок 2. Первый рентгеновский снимок – рука Альберта фон Келликера, 21.01.1896 года
и вызывать флуоресценцию определенных веществ. В зависимости от вида материала и его толщины преграда пропускала больше или меньше луче, что позволяло анализировать структуру различных объектов. Установка, разработанная Рентгеном, выполняла совершенно новую функцию – неразрушающий анализ структуры непрозрачного объекта.
Пример
До появления LED-светильников функция освещения выполнялась лампами накаливания, путем преобразования электричества в световое излучение через нагрев вольфрамовой спирали. Использование светодиодов для освещения представляет собой новый физический принцип освещения, в разы повышающий КПД использования электроэнергии.
Это привело к развитию не только новых систем освещения, но и породило новые направления в других отраслях, например, новые способы выращивания овощей в многоуровневых теплицах.
Рисунок 3. LED-светильник с множеством элементов; один из элементов
Рисунок 4. многоярусная теплица
В рассмотренных примерах:
– Рентгеновский аппарат не мог бы быть создан без открытия Рентгеном икс-лучей (за которое он, кстати, получил Нобелевскую премию по физике за 1901 год и право на дворянский титул!).
– Появление LED-светильников стало возможным только после открытия в 1960-1970-х годах технологии получения желтых, белых и синих светодиодов.
1.1.2. Создание новой технической системы путем гибридизации известных систем
Есть три пути создания принципиально новых первоэтапных технических систем с получением новых функций на базе использования уже известных систем или элементов:
– замена в известной системе одной из ключевых подсистем на другую, качественно превосходящую предыдущую;
– объединение двух (и более) различных известных систем в полисистему с получением нового качества;
– применение известной системы по новому назначению, с реализацией новой функции.
Следует отметить, что в зависимости потребности, которую удовлетворяет новая система, от ее рынка, такие системы могут стать основой для создания целых новых отраслей техники.
Замечание. А могут и не стать! Если рынок ограниченный или специфический!
1.1.2.1. Создание новых систем, через замену одной из подсистем на новую с другим принципом действия (гибридизация 1)
Новые системы, порождающие новые S-кривые, могут появляться, в результате того, что в известной системе одна из значимых подсистем заменяется на новую, с новым принципом действия, что позволяет достичь нового качества. Как правило, заменяется наименее эффективная в настоящий момент для данной системы подсистема, или подсистема, исчерпавшая ресурс развития. Новая подсистема работает на ином (хотя уже известном ранее и используемом в других системах) принципе действия2, что позволяет получить новое качество.
Примеры
Автомобиль – это немного измененная карета, в которую установили двигатель внутреннего сгорания. Обратим внимание на то, что и карета, и двигатель внутреннего сгорания3 были известны и развивались. Однако новая система обладала более высокими потребительскими качествами по сравнению с обычной каретой. Именно поэтому и появилась новая величайшая S-кривая – автомобили.
Рисунок 5. Коляска и первый автомобиль
Пример
Первые беспилотные самолеты были обычными боевыми самолетами, оснащенными системами телеметрии и дистанционного управления.
Обратите внимание на механизм создания изобретения – первоначально в известную систему с минимальными изменениями вводится новая подсистема. Затем, в процессе развития этой вновь созданной системы происходит полное изменение ее конструкции. Поэтому современные автомобили и беспилотники совершенно не похожи на первоначальную карету с мотором и обычный самолет с телеметрией.
Рисунок 6. Современный беспилотник
Как это ни парадоксально, но такие значимые с точки зрения человечества новые технические системы, как автомобиль, реактивная авиация, не что иное, как «просто» удачная замена одной из важных подсистем в технической системе, на уже известную, но качественно более совершенную. И замена выполнена в соответствие с известными законами развития технических систем. Они не являются пионерными системами! То есть в классификации ТРИЗ – это ГИБРИДИЗАЦИЯ ТЕХНИЧЕСКИХ СИСТЕМ.
1.1.2.2. Простое объединение двух и более систем с последующим свертыванием (гибридизация 2)
Объединение двух и более систем позволяет создавать новые объекты, которые порождают новые S-кривые.
Пример
В современном комбайне объединены две системы – косилка и молотилка. Но у них общий двигатель, шасси с колесами, а технология позволяет одновременно выполнять две операции. И все это управляется одним человеком!
Рисунок 7. Косилка, молотилка, комбайн
Пример
Катамаран – объединение двух лодок, которое дает дополнительное свойство – большую устойчивость при снижении сопротивления.
Рисунок 8. Катамаран
Техника гибридизации хорошо разработана в работах В. М. Герасимова и В. О. Прушинского, и может быть использована инженерами после приобретения небольшого опыта [11,12].
Инструментами для гибридизации могут быть, хорошо разработанные к настоящему времени, методика функционально-стоимостного анализа и законы развития технических систем.
1.1.2.3. Использование известных материалов, технических систем и технологий по новому применению
Часто применение известных технологий порождает новые технические системы (новые S-кривые), отличающиеся от тех, которые использовали эти технологии ранее.
Наиболее ярким примером этого являются современные компьютеры. Первоначально компьютеры разрабатывались для выполнения сложных математических расчетов.
Но, в какой-то момент, программисты начали использовать компьютеры для печати картинок символами. Идея была подхвачена, и вскоре на компьютере стали печатать тексты. Через некоторое время у компьютеров появилась масса новых применений. В настоящее время математические вычисления являются лишь одним из узких сегментов среди всех применений компьютеров. Разумеется, и сама техническая система при этом претерпела существенные изменения.
Рисунок 9. Первый компьютер IBM
Грамотные изобретатели, анализируя систему, всегда будут искать ресурсные функции, специфические свойства и характеристики системы, которые пока никак не используются, но могут удовлетворять новые потребности. Затем они постараются создать новые системы, в которых эти функции будут гипертрофированно развиты, и найдут для них новые рынки4.
Пример
В марте 1853 года сестра Леви Страусса пригласила его погостить в Калифорнию. В это время Сан-Франциско была знаменитая золотая лихорадка, и массы старателей стремились в Калифорнию в надежде обогатиться. Шурин Страусса решил подзаработать, и попросил Леви прихватить с собой парусины, которую хотел использовать для шитья палаток. В то время, в связи с переходом флота от парусников к пароходам, парусина резко подешевела. Однако, когда Леви приехал в Калифорнию, выяснилось, что спроса на палатки нет, зато у старателей большая проблема с одеждой, которая быстро протиралась и портилась. Предприимчивый Страусс сообразил, что парусина может быть использована по другому назначению, и начал шить из нее штаны. Это и были первые джинсы! Неожиданно новая одежда стала пользоваться большим спросом. В 1873 году он вместе с Джекобом Девисом получил патент на «Комбинезон без верха», и учредил компанию «Леви Страусс».
Рисунок 10. Фирменная этикетка Леви Страусс
Пример
Первоначально резонансный магнетрон, изобретенный британскими физиками Джона Рэндалла и Гарри Бута в 1940 году, применялся в радарах, которые эффективно наблюдали за небом в поисках самолетов. Этими разработками занималась во время Второй Мировой войны и сразу после нее занималась, американская компания Raytheon5.
Однако вскоре после войны финансирование оборонных разработок сократилось, и перед инженерами встала задача найти новые рынки для продукции компании. Инженер компании Перси Спенсер вспомнил, что однажды, работая с магнетроном, он обнаружил, что у него в кармане расплавился шоколадный батончик. Повторив эксперимент, он понял, что магнетрон можно использовать для нагрева предметов. Так появилась идея создания микроволновых печей.
Первая печь весила около 340 килограмм, стоила около 3 000 долларов – в то время колоссальные деньги, примерно стоимость среднего дома или элитного «Кадиллака»! Поэтому новые печи использовались только в ресторанах. Но, после ряда усовершенствований и удешевлений, ее вес уменьшился до 10—15 килограмм, а цена снизилась до 20—250 долларов. Рынок стал массовым, а микроволновая печь стала обязательным предметом почти в каждом американском доме.
Рисунок 11. Магнетрон (разрез) и первая серийная микроволновая печь
Новое применение различным материалам находят, если неожиданно выявляется, что они обладают полезными свойствами для других целей. Иногда это становится началом развития нового продукта.
1.2. Основные этапы закона S-образного развития технических систем
О работе любой технической системы судят по тому, насколько хорошо она выполняет свою главную функцию, ради которой была создана. Например, если мы говорим о самолёте, то это скорость, высота подъема, грузоподъёмность. Измеряя эти характеристики в цифрах, мы получаем параметры технической системы, которые можно сравнивать между собой и оценивать уровень ее развития с течением времени6.
Техническая система развивается со временем, и её характеристики изменяются. Характеристики современных самолётов существенно отличаются от характеристик самолётов 30-х годов.
Рисунок 12. S-образная кривая развития технической системы
Исследования показали, что, если построить график зависимости любого главного параметра технической системы от времени, он будет напоминать S-образную кривую. Следует отметить, что именно напоминает, а не точно повторяет, поскольку в силу случайного развития могут быть существенные отклонения.
Например, одним из главных характеристик самолета является скорость, которую он может развивать. Скорость первых самолётов была невелика: 50—60 км/час. К началу Первой Мировой войны она достигла 114 км/час. Ситуация радикально изменилась с началом войны, когда самолеты оказались способными обеспечить военное преимущество в боевых действиях. В авиастроение начали вкладывать значительные средства, что привело к быстрому развитию авиации. Конкуренция заставила быстро совершенствовать самолеты, и увеличивать их скорость. Особенно важна скорость была в истребительной авиации, поскольку она позволяла навязывать противнику тактику боя – атаковать, когда у атакующих было преимущество, и уходить от боя при численном превосходстве противника. В конце 1930-х годов скорость самолетов уже достигала 570—590 км/час. Во время Второй Мировой войны скорость продолжала расти, поскольку господство в воздухе стало решающим фактором на фронтах. К 1945—1948 годам она достигла 750 км/час и практически прекратила расти из-за ограничений, связанных с работой винтов7. Рост мощности моторов не позволял значительно увеличить скорость. В это время появилось новые концепции двигателей – реактивные и турбореактивные двигатели.
Изменение концепции двигателя привело радикальному изменению всей конструкции самолёта, что ознаменовало начало новой S-кривой.
Примечание: Мы рассмотрели только S-кривую зависимости скорости от времени, используя усредненное значение скорости по разным компаниям и странам. Аналогичные кривые можно построить, принимая за главный параметр грузоподъемность или количество пассажиров для грузовых и пассажирских самолетов.
В ТРИЗ традиционно выделяют три основных этапа развития системы и два вспомогательных – 0-й и 4-ый8. Их мы и рассмотрим подробнее.
0-й этап – появление идей и неполных систем,
1-й этап – зарождение системы, от получения минимальной работоспособности до получения потребительской ценности (коммерческого использования системы).
2-й этап – быстрый рост и развитие системы.
3-й этап – замедление и полное прекращение роста основных характеристик системы.
4-й этап – угасание системы и переход на уровень «нишевого» продукта.
Рассмотрим эти этапы подробнее.
1.2.1. Нулевой этап
Нулевой этап разработки технической системы – это время до создания первого работоспособного образца новой системы. Этот этап включает в себя создание эскизов, чертежей и макетов (возможно неполной технической системы), которые ещё не работают, но уже служат основой для дальнейших разработок и размышлений.
Примером нулевого этапа может служить планер Феликса дю Тампль. В 1874 году во Франции, в городе Брест, он построил большой планер из алюминия с размахом крыла 13 метров и весом около 80 кг (без учёта веса пилота). Полёт, начался
Рисунок 13. Моноплан Феликса дю Темпл, 1874.
с трамплина, продолжался несколько минут и благополучно завершился. Но планер не имел двигателя, то есть в полной мере не мог считаться полной технической системой.
Самолет Можайского имел все элементы, относящиеся к функциональному центру системы, но использовал в самолете паровой двигатель. Его самолет принципиально не мог подняться в воздух, то есть выполнять главную функцию самолета – «летать».
Рисунок 14. Самолет Можайского
В ракетной технике, нулевой этап – это работающие по принципу реактивного движения китайские фейерверки. Фейерверки были созданы еще при династии Хань, то есть более 2 000 лет назад. Однако их трудно назвать ракетами в современном смысле слова. Ведь в них не было системы управления.
Рисунок 15. Китайские фейерверки
Основным признаком завершения нулевого этапа является создание системы с полным функциональным центром, то есть минимально работоспособной системы.
Для авиации такой системой стал самолет братьев Райт, поднявшийся в воздух в 1904 году.
Рисунок 16. Самолет братьев Райт 1904 г.
Теоретические основы ракетной техники были разработаны в конце 19 века. С начала 20 века в России (группой Фридриха Цандера), США (группой Роберта Годдарда) и Германии (группой Германа Оберта) началось создание новая техническая система, которую можно называть «ракетой на жидком топливе». Первые ракеты такого типа были созданы только 1920-е годы. Именно это время и можно обозначить, как завершение нулевого этапа в ракетной технике, и начало 1-го этапа.
Рисунок 17. Роберт Годдард и его ракета
Основные признаки нулевого этапа
Коллектив: Энтузиасты-фантазеры;
Лидер: фанатик, увлеченный своим детищем.
Финансирование: регулярное финансирование отсутствует, финансирование осуществляется за счет разработчиков, иногда за счет спонсоров, изредка за счет государственных грантов на разработку научных идей, лежащих в основе технической системы.
Рост основных параметров: Системы как таковой нет, и нет роста параметров. Отрабатывается пробная конструкция (хотя и без полностью удачных результатов).
Рынок: нет системы – нет и рынка.
Реклама, маркетинг: отсутствуют.