Buch lesen: "Биохимия метаболизма. Учебное пособие", Seite 4
Механизмы анаплеротических реакций
Цикл лимонной кислоты – это еще и один из амфиболических путей. Он используется не только для окислительного катаболизма, т. е. для расщепления углеводов, жирных кислот и аминокислот, но может служить также первой стадией многих биосинтетических путей, для которых он является источником предшественников. Под воздействием ряда важных вспомогательных ферментов некоторые промежуточные продукты цикла лимонной кислоты, главным образом α-кетоглутарат, сукцинат и оксалоацетат, могут удаляться из цикла и использоваться в качестве предшественников аминокислот. Скорость функционирования цикла лимонной кислоты при этом, казалось бы, должна снижаться, поскольку такой отток промежуточных продуктов из цикла должен понижать их концентрацию в клетке. В действительности же этого не происходит, так как убыль промежуточных продуктов цикла восполняется благодаря действию другого набора ферментов. При нормальных условиях реакции, отвлекающие промежуточные продукты из цикла, и реакции, восполняющие их убыль, находятся в состоянии динамического равновесия, так что концентрация этих продуктов в митохондриях остается более или менее постоянной.
Специальные ферментативные реакции, обеспечивающие пополнение пула промежуточных продуктов цикла лимонной кислоты, носят название анаплеротических («пополняющих») реакций. Наиболее важная реакция такого рода в животных тканях это ферментативное карбоксилирование пирувата за счет СО2 с образованием оксалоацетата катализирует эту обратимую реакцию фермент пируваткарбоксилаза. Если для цикла лимонной кислоты не хватает оксалоацетата или какого-нибудь другого промежуточного продукта цикла, то карбоксилирование пирувата стимулируется и запас оксалоацетата растет. Для ферментативного присоединения карбоксильной группы к молекуле пирувата требуется энергия. Источником ее служит сопряженное с данной реакцией расщепление АТФ до AДФ и фосфата. Поскольку суммарная реакция сопровождается лишь незначительным изменением стандартной свободной энергии, мы можем заключить, что свободная энергия, необходимая для присоединения карбоксильной группы к пирувату, примерно равна свободной энергии, выделяющейся при гидролизе АТФ. Пируваткарбоксилаза очень сложный фермент. Его молекулярная масса равна приблизительно 650000 Da. Молекула фермента содержит четыре кофермента. Каждый из них состоит из одной молекулы витамина биотина, ковалентно связанного (пептидной связью) с аминогруппой особого остатка лизина, находящегося в активном центре. Свободный СО2, предшественник новой карбоксильной группы оксалоацетата, сначала активируется путем присоединения к одному из атомов азота в молекуле биотина. Эта активация, связанная с расходованием АТФ, составляет первую стадию реакции, катализируемой пируваткарбоксилазой. На второй стадии, протекающей также в активном центре фермента, новая карбоксильная группа, ковалентно связанная с простетической группой фермента, переносится на пируват с образованием оксалоацетата. Пируваткарбоксилаза принадлежит к регуляторным ферментам. В отсутствие ацетил-СоА, который служит для нее положительным модулятором, скорость катализируемой ею прямой реакции, приводящей к образованию оксалоацетата, очень невелика. Избыток же ацетил-СоА. поставляющего «топливо» для цикла лимонной кислоты, стимулирует пируваткарбоксилазную реакцию; в результате этого образуется больше оксалоацетата и цикл использует больше ацетил-СоА в цитратсинтазной реакции. Пируваткарбоксилазная реакция – главная анаплеротическая реакция в печени и почках. В миокарде и в мышцах протекают другие анаплеротические реакции. Одна из таких реакций катализируется фосфоенолпируваткарбоксикиназой. В этой реакции происходит расщепление фосфоенолпирувата – сверхвысокоэнергетического фосфорилированного соединения, образующегося в процессе гликолиза. Высвобождаемая энергия используется для карбоксилирования с образованием оксалоацетата, а ее остаток запасается в форме ГТФ.
Глиоксилатный цикл – одна из модификаций цикла лимонной кислоты
У растений и некоторых микроорганизмов, например у Е. coli, ацетильные группы часто служат не только высокоэнергетическим «топливом», но и источником метаболитов, из которых строятся углеродные скелеты углеводов. В таких клетках действуют два варианта цикла лимонной кислоты: 1) обычная последовательность реакций, в ходе которой происходит окисление ацетил-СоА до СО2 свойственная большинству тканей, и 2) особая ее модификация, называемая глиоксилатным циклом (последовательность реакций глиоксилатного цикла представлена на рисунке 9).

Рисунок 9: Схема реакций глиоксилатного цикла
В глиоксилатном цикле ацетил-СоА взаимодействует с оксалоацетатом, в результате чего образуется цитрат. Однако расщепление изоцитрата происходит не в обычной изоцитратдегидроненазной реакции, как в цикле лимонной кислоты, а особым путем под действием фермента изоцитратлиазы с образованием сукцината и глиоксилата. Образовавшийся глиоксилат далее конденсируется с другой молекулой ацетил-СоА, что приводит к образованию малата, эта реакция катализируется малатсинтазой. Затем малат окисляется до оксалоацетата, который может конденсироваться с новой молекулой ацетил-СоА, начиная тем самым новый оборот цикла.
При каждом обороте глиоксилатного цикла в него вступают две молекулы ацетил-СоА и образуется одна молекула сукцината, которая затем используется в процессах биосинтеза. Сукцинат может превращаться через фумарат и малат в оксалоацетат из которого образуется фосфоенолпируват путем обращения описанной выше фосфоенолпируваткарбоксикиназной реакции. Фосфоенолпируват используется в качестве предшественника при биосинтезе глюкозы.
У животных глиоксилатный цикл отсутствует; изоцитратсинтазы и малатлиазы в животных клетках нет. В организме животных существуют другие пути для синтеза углеводов из простых предшественников.
В прорастающих семенах глиоксилатный цикл, напротив, функционирует очень активно: таким путем из ацетильных групп (источником которых служат жирные кислоты, входящие в состав запасных триацилглицеролов) образуется глюкоза. Ферменты изоцитратлиаза и малатсинтаза находятся в растительных клетках в особых цитоплазматических органеллах глиоксисомах.
Дыхательная цепь и окислительное фосфорилирование
Как было рассмотрено ранее, суммарная реакция окисления глюкозы до CO2 в реакциях гликолиза и цикле трикарбоновых кислот выглядит следующим образом:
Глюкоза +10NAD+ +2FAD+ +2АДФ+2 ГДФ = 6 CO2 +10NADH +2FADH2 +2ГТФ +2ATФ
Как видно из суммарной реакции энергетический выход данного процесса окисления невелик: 2 АТФ из гликолиза и 2 ГТФ из цикла трикарбоновых кислот, если цикл идет в печени, то есть только в печеночной ткани цикл трикарбоновых кислот дает энергетический выход в виде нуклеозидтрифосфатов. При этом основным продуктом окисления являются восстановленные доноры/акцепторы электронов или NADH и FADH2, поэтому важным фактором является доказательство возможности использовать данные молекулы в качестве источника энергии. Хотя в составе данных молекул присутствуют фосфоангидридные связи, характерные для нуклеозидтрифосфатов, и, следовательно, данные молекулы могут быть донорами энергии как АТФ, но гидролиз данных молекул не является экономически выгодным, так как затраты на синтез этих молекул слишком велик.
Вторая проблема связана с тем, что гидролиз связи может происходить как в окисленной, так и в восстановленной молекуле, следовательно, с такой точки зрения цикл трикарбоновых кислот становится бессмысленным, что для природы не характерно.
Из этого можно сделать вывод, что запасание энергии связано с процессом восстановления окислительно-восстановительных эквивалентов NAD+ и FAD+ и окислительно-восстановительными реакциями.
Основным параметром в окислительно-восстановительных реакциях является их способность отдавать (быть восстановителем) или принимать (быть окислителем) электроны в ходе реакции. Экспериментальной характеристикой этих способностей молекул является окислительно-восстановительный потенциал или red/ox потенциал.
Окислительно-восстановительные потенциалы и изменения свободной энергии
Окислительно-восстановительный потенциал – это электрохимическая категория. Необходимо рассмотреть для примера вещество, которое может существовать в окисленной X+ и в восстановленной форме Х. Такая пара называется окислительно-восстановительной парой (схема эксперимента для определения окислительно-восстановительного потенциала представлена на рисунке 10).

Рисунок 10: Структура эксперимента метода полукамер для определения окислительно-восстановительного потенциала
Окислительно-восстановительный потенциал такой пары можно определить, измеряя электродвижущую силу, развиваемую опытной полукамерой по отношению к стандартной контрольной полукамере. Опытная полукамера представляет собою электрод, погруженный в раствор 1 М окислителя (X+) и 1 М восстановителя (X). Стандартная контрольная полукамера состоит из электрода, погруженного в 1 М раствор Н+, находящийся в равновесии с газообразным Н2 при давлении в 1 атм. Электроды присоединяют к вольтметру и агаровым мостиком обеспечивают электропроводность между полукамерами. Происходит поток электронов oт одной полукамеры к другой. Если реакция идет в направлении
X + H+ → X+ +1/2H2.
то в полукамерах будут происходить следующие реакции:
Х → X+ + ē, H+ + ē → 1/2H2
Таким образом, электроны движутся от опытной полукамеры к контрольной и, следовательно, электрод в опытной полукамере заряжен отрицательно по отношению к электроду стандартной полукамеры. Окислительно-восстановительный потенциал пары X+:X соответствует напряжению в начале эксперимента (когда концентрации X+, X и Н+ равны 1 М). Окислительно-восстановительный потенциал пары Н+:Н2 определен равным 0 В (вольт).
Значение окислительно-восстановительного потенциала теперь очевидно. Отрицательный окислительно-восстановительный потенциал говорит о том, что данное вещество имеет меньшее сродство к электронам, чем Н2 (как в вышеприведенном примере), то есть молекула является донором электронов, то есть восстановителем. Положительный окислительно-восстановительный потенциал свидетельствует о более высоком, чем у Н2, сродстве данного вещества к электронам, то есть является окислителем или молекулой, с большей легкостью присоединяющей электроны. Эти соотношения относятся к стандартным условиям, когда концентрации окислителя, восстановителя и Н+ равны 1 М и давление Н2 составляет 1 атм.
Таким образом, сильный восстановитель (например, NADH) обладает отрицательным окислительно-восстановительным потенциалом, тогда как сильный окислитель (О2) имеет положительный окислительно-восстановительный потенциал. Окислительно-восстановительные потенциалы многих биологически важных окислительно-восстановительных пар известны.
Изменение свободной энергии окислительно-восстановительной реакции можно легко вычислить из разности окислительно-восстановительных потенциалов реагирующих соединений.
Любую окислительно-восстановительную реакцию в общем виде можно представить следующим образом:
Сначала нужно ввести обозначения: окислитель+ – окисленная форма окислителя, окислитель – восстановленная форма окислителя, восстановитель – восстановленная форма восстановителя, восстановитель+ – окисленная форма восстановителя. Запишем общую реакцию, испльзуя обозначения:
окислитель+ + восстановитель → окислитель +восстановитель+ (реакция А)
Любую окислительно-восстановительную реакцию разделяют на две полу-реакции, каждая из которых представляет собой обмен электронами между окисленной и восстановленной формами окислительно восстановительной пары, чей потенциал можно измерить в эксперименте, описанном выше:
окислитель+ + ē → окислитель (реакция Б)
Окислительно восстановительный потенциал этой пары Е1 восстановитель+ + ē→ восстановитель (реакция В)
Окислительно восстановительный потенциал этой пары Е2
Вычитая реакцию в) из реакции б), получаем желаемую реакцию а) и ΔE»о
Теперь можем рассчитать ΔG0» для восстановления пирувата за счет NADH. Изменение стандартной свободной энергии ΔG0» связано с изменением окислительно-восстановительного потенциала ΔE'о уравнением
ΔG0 = -nF ΔE»о
где n- число переносимых электронов, F-число Фарадея (23,062 ккал • В -1 • моль -1), ΔE'о выражается в вольтах, ΔG0 в килокалориях на моль.
Величина окислительно-восстановительного потенциала дыхательной цепи составляет 1,14 В, что соответствует 53 ккал.
Изменение окислительно-восстановительного потенциала при переходе от системы NAD+/NADH к системе О2/Н2О составляет 1,1 В.
Движущая сила окислительного фосфорилирования – это потенциал переноса электронов, присущий NADH или FADH2. Рассчеты ΔE'о и ΔG0 связанные с окислением NADH под действием О2. Промежуточные частичные реакции следующие:
а) 1/2О2 +2Н+ +2 ē→ Н2О
E«о = +0,82 В,
б) NAD+ + Н+ +2 ē→ NADH
E«о = – 0,32 В.
Вычитая реакцию б) из реакции а), получаем
в) 1/2 О2 + NADH + Н+ → Н2О + NAD +
ΔE'о = +1,14 В.
Свободная энергия окисления для этой реакции составляет
ΔG0 = -2—23,062.1,14 = – 52,6 ккал/моль.
Таким образом доказано, что молекула NADH является источником энергии, и, как показывают расчеты, при окислении этой молекулы с участием кислорода выделяется такое количество энергии, которое достаточно для синтеза 7 молекул АТФ. Но реакция происходит взрывообразно, и это не позволяет перевести энергию в более адекватную форму.
Чтобы обеспечить перевод энергии окисления в энергию АТФ необходима система окисления, это обеспечивает дыхательная цепь, состоящая из 4-х белковых комплексов, содержащих коферменты, участвующие в окислительно-восстановительных реакциях. В результате мы имеем с одной стороны материальную группу молекул, передающих электроны друг от друга, то есть образуется система передачи электронов от NADH к О2 по которому идут электроны, как электрическая цепь в сети, с другой стороны это последовательность окислительно-восстановительных реакций, которые происходят в составе электронтранспортной цепи, молекулы коферментов являются окислителями (акцепторами электронов) при взаимодействии с предшествующими молекулами, и являются восстановителями (донорами электронов) при взаимодействии со следующей молекулой цепи.
Из этого заключаем, что каждый следующий кофермент является большим окислителем, чем предыдущий, то есть этот кофермент «отбирает» электроны у предыдущего кофермента, а у него электроны «отбирает» следующий кофермент в электронтранспортной цепи. В данном случае наблюдается увеличение окислительно-восстановительного потенциала, следовательно, каждый следующий кофермент в электронтранспортной цепи является большим окислителем, и, как следствие, электронтранспортная цепь не только физическая часть для потока электронов, но и последовательность окислительно-восстановительных реакций.
Организация электронтранспортной цепи
Электронтранспортная цепь организована во внутренней мембране митохондрий и представляет собой четыре белковых комплекса, содержащих коферменты, окислительно-восстановительных реакций (общий план организации и функционирования электрон-транспортной цепи изображен на рисунке 11).

Рисунок 11: Схема общей организации дыхательной цепи (источник: Скулачев В. П., Богачев А. В., Каспаринский Ф. О. Мембранная биоэнергетика М.: Издательство МГУ, 2012)
Первый комплекс – NADH-дегидрогеназа (комплекс I), сукцинат-дегидрогеназа (комплекс II), убихинон-цитохром с редуктаза (комплекс III), цитохром оксидаза (комплекс IV).
NADH-дегидрогеназа (комплекс I) включает в себя флавинмононуклеотид (FMH) и как минимум шесть Fe-S комплексов. Известны три вида Fe-S-центров. В простейшем случае единственный атом железа тетраэдрически координирован с сульфогидрильными группами четырех цистеиновых остатков белка. Второй вид комплексов (обозначен как Fe2-S2) содержит 2 атома железа и два неорганических дисульфида, присоединенных к четырем цистеиновым остаткам. В комплексах третьего вида (Fe4-S4) содержится четыре атома железа, четыре неорганических сульфида и четыре остатка цистеина. В состав NADH-дегидрогеназы входят два кофермента класса Fe2-S2, и четыре класса Fe4-S4 (Схема организации и функционирования коферментов комплекса I представлена на рисунке 12).

Рисунок 12: А – схема окислительно-восстановительных реакций в комплексе I; Б – структура FeS коферментов
Сукцинат-дегидрогеназа (комплекс II) состоит из 4 субъединиц с молекулярными массами 70, 30, 14 и 12 кDa и содержит в качестве окислительно-восстановительных групп флавинадениндинуклеотид (FAD), ковалентно связанный с самой тяжелой субъединицей, и 3 Fe-S-кластера (один Fe2-S2 и два Fe4-S4), ассоциированных с субъединицей с молелекулярной массой 30 кDa.
Комплекс I обеспечивает окисление молекулы NADH, а комплекс II окисляет молекулу FADH2, электроны поступают на коферменты электрон-транспортной цепи и в конце концов поступают на молекулу убихинона или кофермента Q. Кофермент Q – хиноновое производное с длинным изопреноидным хвостом. Его называют также убихиноном из-за его повсеместного распространения в биологических системах.
Число изопреновых единиц в коферменте Q зависит от вида живых организмов, У млекопитающих его наиболее распространенная форма содержит десять изопреновых единиц и обозначается как Q10. Изопреноидный хвост обуславливает высокую неполярность Q, которая способствует его быстрой диффузии в углеводородной фазе внутренней митохондриальной мембраны. Кофермент Q является компонентом митохондриальных липидов; среди других липидов преобладают фосфолипиды, являющиеся частью митохондриальной мембраны. Структура кофермента Q сходна со структурой витаминов К и Е.
Близкую структуру имеет и пластохинон, находящийся в хлоропластах. Все эти вещества имеют в своей структуре полиизопреноидную боковую цепь. Содержание кофермента Q значительно превосходит содержание других компонентов дыхательной цепи (по параметру стехиометрии); это позволяет предположить, что кофермент Q является подвижным компонентом дыхательной цепи, который получает восстановительные эквиваленты от фиксированных флавопротеиновых комплексов и передает их на цитохромы. Кофермент Q-единственный переносчик электронов в дыхательной цепи, который не связан прочно с белком и не присоединен к нему ковалентно. Кофермент Q действительно служит высокомобильным переносчиком электронов между флавопротеинами и цитохромами цепи переноса электронов.
Убихинон-цитохром с редуктаза (комплекс III) включает 11 субъединиц с молекулярным весом: 49,5, 47, 44, 28, 21,5, 13,5, 9,5, 9, 8, 7, 6,5 kDa соответственно. Третья субъединица весом 44 kDa присоединяет две молекулы гемов bH и bL. Центральную роль цитохромов в дыхании открыл в 1925 г. Дэвид Кейлин (David Keilin).
Цитохром – это переносящий электроны белок, молекула которого содержит в качестве простетической группы гем.
Гем – это модифицированная молекула тетрапиррольного кольца, в центре которой ассоцииирован ион металла (это могут быть ионы железа, меди и других металлов). В зависимости от радикалов, модифицирующих кольцо, и от ионов ассоцированных с кольцом гема, выделяют несколько классов цитохромов. Субъединица V или белок Риске содержит Fe2-S2 кластер. Субъединица VI связывает убихинон, субъединица IV координирует цитохром с. Функции остальных субъединиц не выявлены или участвуют в организации комплекса (схема функционирования убихинона и коферментов комплекса III представлена на рисунке 13).

Рисунок 13: А – схема окислительно-восстановительной реакции с убихиноном; Б – схема окислетельно-восстановительных реакций между FeS белком и убихиноном, между убихиноном и гемом; В – структура гема в цитохромах
Электроны с убихинон-цитохром с редуктазы переносятся на цитохром с. Цитохром с – водорастворимый, подвижный белок с молекулярной массой 12 kDa. Этот белок мигрирует между комплексами III и IV в межмембранном пространстве.
Цитохром оксидаза (комплекс IV) содержит восемь белковых субъединиц, с ними ассоциированы два гема, содержащих ионы меди, которые называют гемы а и а3. Кроме этого содержит два иона меди CuA и СuB. Центр СuB представляет ион меди соединенный с радикалами трех остатков гистидина. Центр CuA содержит два атома меди расположенных очень близко и скоординированных с белком (схема функционирования коферментов комплекса IV представлена на рисунке 14).

Рисунок 14: Схема функционирования коферментов комплекса IV
Die kostenlose Leseprobe ist beendet.
