Nur auf LitRes lesen

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

Основной контент книги Statistical Implications of Turing's Formula
Text PDF

Umfang 299 seiten

0+

Statistical Implications of Turing's Formula

Nur auf LitRes lesen

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

€133,44

Über das Buch

Features a broad introduction to recent research on Turing’s formula and presents modern applications in statistics, probability, information theory, and other areas of modern data science

Turing's formula is, perhaps, the only known method for estimating the underlying distributional characteristics beyond the range of observed data without making any parametric or semiparametric assumptions. This book presents a clear introduction to Turing’s formula and its connections to statistics. Topics with relevance to a variety of different fields of study are included such as information theory; statistics; probability; computer science inclusive of artificial intelligence and machine learning; big data; biology; ecology; and genetics. The author provides examinations of many core statistical issues within modern data science from Turing's perspective. A systematic approach to long-standing problems such as entropy and mutual information estimation, diversity index estimation, domains of attraction on general alphabets, and tail probability estimation is presented in light of the most up-to-date understanding of Turing's formula. Featuring numerous exercises and examples throughout, the author provides a summary of the known properties of Turing's formula and explains how and when it works well; discusses the approach derived from Turing's formula in order to estimate a variety of quantities, all of which mainly come from information theory, but are also important for machine learning and for ecological applications; and uses Turing's formula to estimate certain heavy-tailed distributions.

In summary, this book:

• Features a unified and broad presentation of Turing’s formula, including its connections to statistics, probability, information theory, and other areas of modern data science

• Provides a presentation on the statistical estimation of information theoretic quantities

• Demonstrates the estimation problems of several statistical functions from Turing's perspective such as Simpson's indices, Shannon's entropy, general diversity indices, mutual information, and Kullback–Leibler divergence

• Includes numerous exercises and examples throughout with a fundamental perspective on the key results of Turing’s formula

Statistical Implications of Turing's Formula is an ideal reference for researchers and practitioners who need a review of the many critical statistical issues of modern data science. This book is also an appropriate learning resource for biologists, ecologists, and geneticists who are involved with the concept of diversity and its estimation and can be used as a textbook for graduate courses in mathematics, probability, statistics, computer science, artificial intelligence, machine learning, big data, and information theory.

Zhiyi Zhang, PhD, is Professor of Mathematics and Statistics at The University of North Carolina at Charlotte. He is an active consultant in both industry and government on a wide range of statistical issues, and his current research interests include Turing's formula and its statistical implications; probability and statistics on countable alphabets; nonparametric estimation of entropy and mutual information; tail probability and biodiversity indices; and applications involving extracting statistical information from low-frequency data space. He earned his PhD in Statistics from Rutgers University.

Genres und Tags

Einloggen, um das Buch zu bewerten und eine Rezension zu hinterlassen
Buch Zhiyi Zhang «Statistical Implications of Turing's Formula» — online auf der Website lesen. Hinterlassen Sie Kommentare und Bewertungen, stimmen Sie für Ihre Favoriten.
Altersbeschränkung:
0+
Veröffentlichungsdatum auf Litres:
05 Juli 2018
Umfang:
299 S.
ISBN:
9781119237075
Gesamtgröße:
2.5 МБ
Gesamtanzahl der Seiten:
299
Verleger:
Audio
Durchschnittsbewertung 4,2 basierend auf 181 Bewertungen
Audio
Durchschnittsbewertung 4,7 basierend auf 1485 Bewertungen
Text
Durchschnittsbewertung 4,8 basierend auf 25 Bewertungen
Audio
Durchschnittsbewertung 4,6 basierend auf 596 Bewertungen
Audio
Durchschnittsbewertung 4,5 basierend auf 291 Bewertungen
Entwurf
Durchschnittsbewertung 4,7 basierend auf 205 Bewertungen
Text, audioformat verfügbar
Durchschnittsbewertung 4,7 basierend auf 835 Bewertungen
Audio
Durchschnittsbewertung 4,8 basierend auf 4739 Bewertungen
Text, audioformat verfügbar
Durchschnittsbewertung 4,3 basierend auf 397 Bewertungen
Text PDF
Durchschnittsbewertung 0 basierend auf 0 Bewertungen