Читайте только на Литрес

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

Основной контент книги Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design
Text PDF

Buchdauer 299 Seiten

0+

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Читайте только на Литрес

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

€146,34

Über das Buch

Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications 

This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks.

The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware.

Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.

Genres und Tags

Einloggen, um das Buch zu bewerten und eine Bewertung zu hinterlassen
Buch «Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design» — online auf der Website lesen. Hinterlassen Sie Kommentare und Bewertungen, stimmen Sie für Ihre Favoriten.
Altersbeschränkung:
0+
Veröffentlichungsdatum auf Litres:
23 Dezember 2019
Umfang:
299 S.
ISBN:
9781119507390
Gesamtgröße:
9.3 МБ
Gesamtanzahl der Seiten:
299
Verleger:
Entwurf
Средний рейтинг 4,8 на основе 299 оценок
Audio
Средний рейтинг 4 на основе 23 оценок
Audio
Средний рейтинг 4,2 на основе 878 оценок
Text, audioformat verfügbar
Средний рейтинг 4,8 на основе 1178 оценок
Audio
Средний рейтинг 4,6 на основе 960 оценок
Text
Средний рейтинг 4,9 на основе 167 оценок
Audio
Средний рейтинг 4,8 на основе 5112 оценок
Entwurf
Средний рейтинг 4,5 на основе 46 оценок
Text, audioformat verfügbar
Средний рейтинг 4,7 на основе 7056 оценок
Text PDF
Средний рейтинг 0 на основе 0 оценок