Читайте только на Литрес

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

Основной контент книги Intelligent Credit Scoring. Building and Implementing Better Credit Risk Scorecards
Text PDF

Umfang 459 seiten

0+

Intelligent Credit Scoring. Building and Implementing Better Credit Risk Scorecards

Читайте только на Литрес

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

€43,75

Über das Buch

A better development and implementation framework for credit risk scorecards Intelligent Credit Scoring presents a business-oriented process for the development and implementation of risk prediction scorecards. The credit scorecard is a powerful tool for measuring the risk of individual borrowers, gauging overall risk exposure and developing analytically driven, risk-adjusted strategies for existing customers. In the past 10 years, hundreds of banks worldwide have brought the process of developing credit scoring models in-house, while ‘credit scores' have become a frequent topic of conversation in many countries where bureau scores are used broadly. In the United States, the ‘FICO' and ‘Vantage' scores continue to be discussed by borrowers hoping to get a better deal from the banks. While knowledge of the statistical processes around building credit scorecards is common, the business context and intelligence that allows you to build better, more robust, and ultimately more intelligent, scorecards is not. As the follow-up to Credit Risk Scorecards, this updated second edition includes new detailed examples, new real-world stories, new diagrams, deeper discussion on topics including WOE curves, the latest trends that expand scorecard functionality and new in-depth analyses in every chapter. Expanded coverage includes new chapters on defining infrastructure for in-house credit scoring, validation, governance, and Big Data. Black box scorecard development by isolated teams has resulted in statistically valid, but operationally unacceptable models at times. This book shows you how various personas in a financial institution can work together to create more intelligent scorecards, to avoid disasters, and facilitate better decision making. Key items discussed include: Following a clear step by step framework for development, implementation, and beyond Lots of real life tips and hints on how to detect and fix data issues How to realise bigger ROI from credit scoring using internal resources Explore new trends and advances to get more out of the scorecard Credit scoring is now a very common tool used by banks, Telcos, and others around the world for loan origination, decisioning, credit limit management, collections management, cross selling, and many other decisions. Intelligent Credit Scoring helps you organise resources, streamline processes, and build more intelligent scorecards that will help achieve better results.

Einloggen, um das Buch zu bewerten und eine Bewertung zu hinterlassen
Buch Naeem Siddiqi «Intelligent Credit Scoring. Building and Implementing Better Credit Risk Scorecards» — online auf der Website lesen. Hinterlassen Sie Kommentare und Bewertungen, stimmen Sie für Ihre Favoriten.
Altersbeschränkung:
0+
Veröffentlichungsdatum auf Litres:
24 Dezember 2017
Umfang:
459 S.
ISBN:
9781119282297
Gesamtgröße:
13 МБ
Gesamtanzahl der Seiten:
459
Text, audioformat verfügbar
Durchschnittsbewertung 4,6 basierend auf 1108 Bewertungen
Text, audioformat verfügbar
Durchschnittsbewertung 4,7 basierend auf 630 Bewertungen
Text, audioformat verfügbar
Durchschnittsbewertung 4,6 basierend auf 65 Bewertungen
Text
Durchschnittsbewertung 4,9 basierend auf 12 Bewertungen
Text
Durchschnittsbewertung 4,6 basierend auf 57 Bewertungen
Text, audioformat verfügbar
Durchschnittsbewertung 5 basierend auf 9 Bewertungen
Text PDF
Durchschnittsbewertung 4,5 basierend auf 26 Bewertungen
Text, audioformat verfügbar
Durchschnittsbewertung 4,9 basierend auf 28 Bewertungen
Text PDF
Durchschnittsbewertung 0 basierend auf 0 Bewertungen