Lesen Sie nur auf Litres

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

Основной контент книги Unsupervised Learning
Text PDF

Umfang 289 Seiten

0+

Unsupervised Learning

A Dynamic Approach
Lesen Sie nur auf Litres

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

€137,76

Über das Buch

A new approach to unsupervised learning

Evolving technologies have brought about an explosion of information in recent years, but the question of how such information might be effectively harvested, archived, and analyzed remains a monumental challenge—for the processing of such information is often fraught with the need for conceptual interpretation: a relatively simple task for humans, yet an arduous one for computers.

Inspired by the relative success of existing popular research on self-organizing neural networks for data clustering and feature extraction, Unsupervised Learning: A Dynamic Approach presents information within the family of generative, self-organizing maps, such as the self-organizing tree map (SOTM) and the more advanced self-organizing hierarchical variance map (SOHVM). It covers a series of pertinent, real-world applications with regard to the processing of multimedia data—from its role in generic image processing techniques, such as the automated modeling and removal of impulse noise in digital images, to problems in digital asset management and its various roles in feature extraction, visual enhancement, segmentation, and analysis of microbiological image data.

Self-organization concepts and applications discussed include:

Distance metrics for unsupervised clustering Synaptic self-amplification and competition Image retrieval Impulse noise removal Microbiological image analysis Unsupervised Learning: A Dynamic Approach introduces a new family of unsupervised algorithms that have a basis in self-organization, making it an invaluable resource for researchers, engineers, and scientists who want to create systems that effectively model oppressive volumes of data with little or no user intervention.

Genres und Tags

Einloggen, um das Buch zu bewerten und eine Bewertung zu hinterlassen
Buch Matthew Kyan, Paisarn Muneesawang u.a. «Unsupervised Learning» — online auf der Website lesen. Hinterlassen Sie Kommentare und Bewertungen, stimmen Sie für Ihre Favoriten.
Altersbeschränkung:
0+
Veröffentlichungsdatum auf Litres:
27 September 2018
Umfang:
289 S.
ISBN:
9781118875230
Gesamtgröße:
20 МБ
Gesamtanzahl der Seiten:
289
Verleger: