Читайте только на Литрес

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

Основной контент книги Dirichlet and Related Distributions
Text PDF

Umfang 338 seiten

0+

Dirichlet and Related Distributions

Theory, Methods and Applications
Autoren
Kai Wang Ng,
Guo-Liang Tian
Читайте только на Литрес

Das Buch kann nicht als Datei heruntergeladen werden, kann aber in unserer App oder online auf der Website gelesen werden.

€107,16

Über das Buch

The Dirichlet distribution appears in many areas of application, which include modelling of compositional data, Bayesian analysis, statistical genetics, and nonparametric inference. This book provides a comprehensive review of the Dirichlet distribution and two extended versions, the Grouped Dirichlet Distribution (GDD) and the Nested Dirichlet Distribution (NDD), arising from likelihood and Bayesian analysis of incomplete categorical data and survey data with non-response. <p>The theoretical properties and applications are also reviewed in detail for other related distributions, such as the inverted Dirichlet distribution, Dirichlet-multinomial distribution, the truncated Dirichlet distribution, the generalized Dirichlet distribution, Hyper-Dirichlet distribution, scaled Dirichlet distribution, mixed Dirichlet distribution, Liouville distribution, and the generalized Liouville distribution.</p> <p>Key Features:</p> <ul> <li> <div>Presents many of the results and applications that are scattered throughout the literature in one single volume.<br /> </div> </li> <li> <div>Looks at the most recent results such as survival function and characteristic function for the uniform distributions over the hyper-plane and simplex; distribution for linear function of Dirichlet components; estimation via the expectation-maximization gradient algorithm and application; etc.<br /> </div> </li> <li> <div>Likelihood and Bayesian analyses of incomplete categorical data by using GDD, NDD, and the generalized Dirichlet distribution are illustrated in detail through the EM algorithm and data augmentation structure.</div> </li> <li> <div>Presents a systematic exposition of the Dirichlet-multinomial distribution for multinomial data with extra variation which cannot be handled by the multinomial distribution.<br /> </div> </li> <li> <div>S-plus/R codes are featured along with practical examples illustrating the methods.</div> </li> </ul> <p>Practitioners and researchers working in areas such as medical science, biological science and social science will benefit from this book.</p>

Genres und Tags

Einloggen, um das Buch zu bewerten und eine Bewertung zu hinterlassen
Buch Kai Wang Ng, Guo-Liang Tian et al. «Dirichlet and Related Distributions» — online auf der Website lesen. Hinterlassen Sie Kommentare und Bewertungen, stimmen Sie für Ihre Favoriten.
Altersbeschränkung:
0+
Veröffentlichungsdatum auf Litres:
26 September 2018
Umfang:
338 S.
ISBN:
9781119995869
Gesamtgröße:
3.2 МБ
Gesamtanzahl der Seiten:
338
Verleger:
Text
Durchschnittsbewertung 4 basierend auf 78 Bewertungen
Audio
Durchschnittsbewertung 4,2 basierend auf 771 Bewertungen
Entwurf
Durchschnittsbewertung 4,5 basierend auf 30 Bewertungen
Text, audioformat verfügbar
Durchschnittsbewertung 4,7 basierend auf 411 Bewertungen
Entwurf, audioformat verfügbar
Durchschnittsbewertung 4,7 basierend auf 102 Bewertungen
Audio
Durchschnittsbewertung 4,7 basierend auf 1819 Bewertungen
Text, audioformat verfügbar
Durchschnittsbewertung 4,9 basierend auf 171 Bewertungen
Audio
Durchschnittsbewertung 4,6 basierend auf 897 Bewertungen
Text, audioformat verfügbar
Durchschnittsbewertung 4,4 basierend auf 66 Bewertungen
Text PDF
Durchschnittsbewertung 0 basierend auf 0 Bewertungen