Buch lesen: «История электрификации горной промышленности»

Schriftart:

Основные сокращения

АЭС − атомная электростанция

АВН ‒ аппараты высокого напряжения

АВР ‒ автоматическое включение резерва

ВН ‒ высшее напряжение

ВЛ − воздушная ЛЭП

ВИЭ − возобновляемый источник питания

ВЛЭП ‒ воздушная линия электропередачи

ВЧ ‒ высокой частоты

ГЭУ − гидроэнергетическая установка

ГЭС − гидроэлектрическая станция

ГАЭС − гидроаккумулирующая станция

ГТЭС − геотермальные станции

ГЛЭС − гелиоэлектростанции

ГПП − главная понизительная подстанция

ДЭС − дизельная электростанция

ДРЛ ‒ дуговая ртутная лампа

ДРИ ‒ металлогенная лампа

ДНаТ‒ дуговая, натриевая, трубчатая лампа

ЕПБ ‒ единые правила безопасности

ЗРУ − закрытое распределительное устройство

КРУ − комплектное распределительное устройство

КТП − комплектная трансформаторная подстанция

КРП − карьерный распределительный пункт

КЛ − кабельная линия

КРУН ‒ комплектное распределительное устройство наружной установки

КПД ‒ коэффициент полезного действия

КЗ ‒ короткое замыкание

ЛЭП ‒ линия электропередачи

МТП − мачтовая трансформаторная подстанция

МТЗ ‒ максимально ‒ токовая защита

НН ‒ низшее напряжение

ОРУ − открытое распределительное устройство

ОПП ‒ одиночный распределительный пункт

ПКТП − передвижная комплектная трансформаторная подстанция

ПТЛА − передвижная трансформаторная подстанция (автомобильная)

ПСКТП − передвижная комплектная трансформаторная подстанция с сухим трансформатором

ПЭС − приливные электростанции

ПУПП − передвижная участковая трансформаторная подстанция

ПУЭ ‒ правила устройства электроустановок

ПБ ‒ правила безопасности

ПКО − передвижная комплектная осветительная подстанция

ПРП − передвижной распределительный пункт

ПП ‒ приключательный пункт

ППП ‒ передвижной приключательный пункт

ПКРН ‒ передвижная комплектная распределительная наружная

ПТБ ‒ правила технической безопасности

ПТЭ ‒ правила технической эксплуатации

РП‒ распределительный пункт

РУ − распределительное устройство

РВНО ‒ распределительное высокого напряжения одиночное

РВЛ ‒ рудничный взрывобезопасный люминесцентный

СКТП − сборно-разборная трансформаторная подстанция

СРВИ ‒ светильник рудничный взрыво-искробезопасный

ТЭЦ − теплоцентраль

ТЭС − теплоэлектростанция

ТСН ‒ трансформатор собственных нужд

ТН ‒ трансформатор напряжения

УПП − участковая понизительная подстанция

ЦПП − центральная понизительная подстанция

ЦРП ‒ центральный распределительный пункт

ЯКНО ‒ ячейка комплектная наружная одиночная

Предисловие

Электрификация горных предприятий имеет исключительное значение как основная энергетическая база комплексной механизации и автоматизации горных работ. Современные карьеры и разрезы ‒ крупные потребители электрической энергии, обладающие характерными особенностями, связанными с работой машин и агрегатов в условиях горных работ. Специфика горных работ обусловила ряд специальных требований к электроснабжению предприятий и решению ряда проблем по соблюдению требований безопасности при эксплуатации электрохозяйства.

В отечественной литературе немало работ, посвященных всемирной и отечественной истории электротехники, жизни и творчеству ученых, внесших большой вклад в развитие данной науки и отрасли промышленности. Но отсутствуют работы, посвященные истории развития электрификации горных работ, хотя потребность в подобных исследованиях достаточно велика, тем более что речь идет о развитии электрификации горных работ как одной из главных составляющих любого современного производства.

Перед авторами стояла непростая задача – при небольшом количестве материала и отсутствии архивных данных, отражающих историю электрификации горных работ, создать учебное пособие.

Авторы использовали исследования М.И. Озерного, С.А. Волотковского, Л.В. Гладилина, В.И. Щуцкого, Б.П. Белых, Б.И. Заславца, В.А. Голубева, Л.А. Плащанского, С.А. Алаторцева, В.И. Серова, В.В. Школяренко, В.С. Виноградова, В.В. Дегтярева, А.Ф. Гончарова, В.А. Котлярчука, Н.Н. Чулкова и др., а также воспоминания работников энергомеханической службы бывшего производственного объединения «Красноярскуголь».

Авторы выражают благодарность за оказанную помощь заслуженному энергетику России, профессору, кандидату технических наук Я.А. Кунгсу и бывшему главному механику Ирша-Бородинского разрезоуправления В.И. Зудину.

Введение

Знание истории развития науки и техники дает возможность правильно оценить существующую обстановку в электроэнергетической отрасли, учесть опыт предшествующих поколений и развивать отрасль с учетом этих факторов.

Развитие электроэнергетики ‒ это мощная сила, которая влияет на жизненный уровень людей, изменяет характер общества, выступает причиной социальных перемен и направляет общественное развитие.

Слово «электричество» воспринимается в максимально широком смысле как обширнейшая область применения, включающая свойства, действия, проявление, получение, преобразование, передачу, распределение и, наконец, использование электричества как материала и энергии во всех видах.

Хотя рождение этого слова относят к эпохе античности, лишь к Х1Х в. была сформирована электрическая наука (1800–1830) и создана (1880) электрическая техника. Наука превратилась в теоретические основы электротехники (ТОЭ), а техника ‒ в электротехнику как отрасль промышленности и сферу деятельности, в частности в направление высшего образования.

Электротехника начиналась с изобретений и экспериментов. Так, изобретение А. Вольтом гальванического элемента (1799) и исследования накаливания проводников током (1800) позволили предсказать появление электроосвещения и электротермии, изучать электролиз, гальваностегию и гальванопластику, открыть электрическую дугу (В.В. Петров, 1802) и начать ее применение для освещения, сварки и пайки.

Введение А. Ампером (1820) понятия о направлениях тока наряду с исследованиями Ж. Био и Ф. Савари (1820) по взаимодействию тока и магнитного поля, установление закона Ома (1827) и законов Кирхгофа (1845), работы М. Фарадея по вращению проводника с током (1821) и электромагнитной индукции (1831), исследование Э.Х. Ленцом обратимости электрических машин (1833) привели к созданию сначала прообраза генератора (Фарадей, 1831), а затем и к изготовлению И. Пикси (по заказу Ампера) электромагнитного генератора постоянного и переменного тока (1832), Б.С. Якоби – электродвигателя с непосредственным вращением якоря (1884), Дж. Вулричем – генераторов для питания гальванической ванны (1842).

Самовозбуждение машин, открытое В. Сименсом (1866) вместе с Г. Уайлдом (1863), открытие явления вращающегося магнитного поля, создание системы двухфазного тока Г. Феррарис (1885) и ее развитие (Н. Тесла, 1886), изобретение П.Н. Яблочковым (1876) и И.Ф. Усагиным (1882) трансформатора, М.О. Доливо-Добровольским асинхронного двигателя с «беличей клеткой» (1882) и трехфазного трансформатора с параллельными стержнями (1891), изолирование провода шелком (Дж. Генри, 1827), применение бесшовной резиновой изоляции проводов и кабелей (В. Сименс, 1847) и кабеля со свинцовой оболочкой (Ф. Борель,1879) определили практическую значимость электрических исследований.

Таким образом, открытия в физике и поиски технических решений уже к концу Х1Х в. превратили электротехнику во вполне значимую науку и технику. Завершение формирования основ электротехники отразилось в установлении наименования электрических единиц ( СGS – 1881, SI – 1960), характеристик переменного тока (1889) и обозначений (1893) и, наконец, в образовании (1904) Международной электротехнической комиссии – МЭК. Электротехнический отдел Русского технического общества был создан в 1880 г., тогда же начал выходить журнал «Электричество».

С точки зрения мировой истории именно развитие электротехники и ее экспансия во все отрасли техники, а затем и быта привело к развитию электроэнергетики, которая была сформирована в 1870– 1930 гг. (до этого считали технико-экономически бесперспективным создание и электродвигателя, и электрического генератора).

В 1924 г. был образован Мировой энергетический комитет (МИРЭК), призванный решать проблемы большой энергетики.

Можно выделить некоторые события становления большой энергетики:

• Г. Уайлд исследовал синхронизацию двух генераторов переменного тока (1868);

• З.Т. Грамм (1873) изготовил локомобильно-электрогенераторную установку для электроснабжения предприятия;

• Ф.А. Пироцкий исследовал передачу электричества, а Д.А. Лачинов теоретически обосновал вопрос о передаче большого количества электричества на большое расстояние;

• на первом Всемирном конгрессе электриков (1881) с докладом «О передаче и распределении электрических токов» выступил М. Депре, который позднее (1882) построил первую линию электропередачи постоянного тока высокого напряжения (2,4 кВ, 57 км).

• М.О. Доливо-Добровольский соорудил (1891) трехфазную ЛЭП с междуфазным напряжением 13 760–15 200 В для передачи 200 кВт (генератор 210 кВА, 86-95 В, повышающий трансформатор 150) на 175 км;

• Дж. Лейн-Фокс (1880) изобрел первые счетчики электроэнергии. В Англии были введены первые правила устройства электроустановок;

• Г. Феррарис (1884) ввел понятие коэффициента мощности, Э. Томпсон (1886) применил защитное заземление;

• А.Э. Кеннели (1886) получил зависимость между сечением проводника и длительно допустимым током нагрузки;

• П. Бушеро установил (1898) конденсаторы для компенсации реактивной мощности;

• В. Петерсен предложил (1917) систему компенсации емкостных токов замыкания на землю;

• область устойчивости параллельной работы энергосистем (1920) основополагающими теоретическими работами определил А.А. Горев;

• В.М. Монтсингер (1930) сформулировал основные закономерности между температурой обмотки, нагрузкой и сроком службы силовых трансформаторов;

• И.А. Сыромятников внедрил (1937) самозапуск электродвигателей при кратковременном перерыве питания.

Предпосылкой бурного развития электрификации послужило создание М.О. Доливо-Добровольским трехфазных синхронных генераторов и трансформаторов. Убедительной демонстрацией преимуществ трехфазных цепей была знаменитая Лауфен – Франкфуртская электропередача (1891), сооруженная при активном участии М.О. Доливо-Добровольского. С этого времени возникают мощные электростанции, возрастает напряжение электропередач, возникают новые конструкции электрических машин, аппаратов и приборов. Электродвигатель занимает господствующее положение в системе промышленного электропривода.

В начале ХХ в. процесс электрификации охватывает новые области народного хозяйства, развиваются электротехнология, электротранспорт и др. В современных условиях электрическая энергия широко используется в самых разнообразных отраслях промышленности, на транспорте, в сельском хозяйстве, быту, что потребовало теоретического осмысления и математического описания физических процессов, происходящих в электрических машинах, линиях электропередачи, трансформаторах и других электротехнических устройствах.

Рост потребности в постоянном токе (электротранспорт и др.) вызывает необходимость в развитии преобразовательной техники и промышленной электроники. Электротехника становится базой для разработки автоматизированных систем управления энергетическими и производственными процессами. Появление различных электрических машин дало толчок в развитии такой дисциплины, как «Электрический привод». Применение электрического привода и электроснабжения как на горных, так и на других предприятиях, подача потребителям электроэнергии от мощных электрических станций и подстанций называется электрификацией промышленности, являющейся основной энергетической базой комплексной механизации и автоматизации промышленности.

1. Краткие этапы развития электрификации и горной промышленности

1.1. История электрификации

История электрификации берёт начало в древности, а вернее, начинается в первый день сотворения мира, поскольку первые слова Бога были: «Да будет свет!» Что есть свет? Свет – это форма существования материи в виде электромагнитных колебаний волн. Таким образом, уже первые слова в истории мира утверждали важнейшую роль электрификации не только в существовании отдельно взятого живого организма, но и в глобальном плане ‒ от молекулы до Вселенной.

Начало электрификации относится к концу ХIХ в., когда были созданы электрические генераторы для производства электроэнергии и освоена ее передача на значительные расстояния.

В 1879 г. в Петербурге построена ТЭС для освещения Литейного моста, несколькими годами позже в Москве – для освещения Лубянского пассажа. Одна из первых ТЭС общего пользования была построена Т.А. Эдисоном в 1882 г. в Нью-Йорке. В 1913 г. Россия занимала 8-е место в мире по выработке электроэнергии. Электростанции принадлежали главным образом иностранному капиталу. Крупнейшее акционерное «Общество электрического освещения 1886» контролировалось немецкой фирмой «Сименс и Гальске», строившей ТЭС в Петербурге, Москве, Баку, Лодзи и других городах. Мощность электростанций в России в 1900 г. составляла 80 МВт, а в 1913-м –1141 МВт; они производили 2 млрд кВт ч электроэнергии.

Появление системы трехфазного тока послужило мощным импульсом для широкого использования электрической энергии в промышленности вместо пара, воды и сжатого воздуха.

Горная промышленность явилась фактически первой отраслью, где было положено начало практическому применению электрической энергии.

Вслед за горной промышленностью электричество стало применяться и в других отраслях.

В конце ХIХ и начале ХХ в. важнейшей производственной задачей выступила задача экономного энергосбережения промышленных предприятий, которые приобретали все более крупные масштабы. Наиболее гибкой, транспортабельной и легко трансформируемой формой энергии является электрическая энергия, поэтому на первый план выдвигается задача экономического энергоснабжения. Именно этим объясняется тот широко известный факт, что наиболее бурно развивавшейся и качественно ведущей отраслью промышленности в рассматриваемый период становится электропромышленность. В.И. Ленин указывал, что электрическая промышленность была самой типичной для новейших успехов техники, для капитализма конца ХIХ – начала ХХ вв.

Перевод народного хозяйства на техническую базу современного крупного производства, связанный с широким внедрением электричества в производство, транспорт, сельское хозяйство и другие отрасли, т.е. тот комплекс мероприятий, который называется электрификацией, составил техническую основу социально-экономических преобразований рассматриваемого периода.

В России наиболее бурно электротехническая промышленность начала развиваться после Великой Октябрьской революции. В эти годы началось восстановление и реконструкция электроэнергетического хозяйства страны, разрушенного в годы Первой мировой (1914–1918) и Гражданской (1918–1920) войн. В декабре 1917 – июне 1918 гг. были национализированы крупнейшие электростанции страны. Одновременно началась подготовка к строительству крупных ГЭС и районных ТЭС. В 1920 г. по инициативе В.И. Ленина был разработан первый план электрификации России – план ГОЭЛРО, в основу которого была положена ленинская формула « Коммунизм – это есть Советская власть плюс электрификация всей страны». В 1922 г. введены в строй Каширская ГРЭС и Уткина заводь (ныне 5-я ГРЭС Ленэнерго); в 1924 г. – Кизеловская ГРЭС на Урале, в 1925 г. – Горьковская и Шатурская ГРЭС. 8 ноября 1927 г. состоялась торжественная закладка Днепровской ГЭС. К 1931 г. основные задания плана ГОЭЛРО по наращиванию мощности районных электростанций и по производству электроэнергии были выполнены. В годы предвоенных пятилеток (1929–1940) созданы крупные энергосистемы на территории Украины, Белоруссии, Северо-Запада и др.

В начале Великой Отечественной войны (1941–1945 гг.) оборудование многих электростанций было эвакуировано в тыловые районы, где в рекордные сроки вводились в эксплуатацию новые энергетические мощности. За 1942–1944 гг. введено 3,4 ГВт, главным образом на Урале, в Сибири, Казахстане и Средней Азии. За годы войны разрушена 61 крупная электростанция общей мощностью около 5 ГВт, вывезено в Германию 14 тыс. котлов, 1,4 тыс. турбин и свыше 11 тыс. электродвигателей.

В послевоенные годы электрификация страны развивалась быстрыми темпами. К 1947 г. СССР вышел на 2-е место в мире (после США) по производству электроэнергии, а в 1975 г. производил электроэнергии больше, чем ФРГ, Великобритания, Франция, Италия, Швеция и Австрия вместе взятые. Увеличился среднегодовой прирост производства электроэнергии. Введены в строй Братская, Усть-Илимская, Усть-Хантайская, Красноярская, Саяно-Шушенская ГЭС и др. В 2013 г. начала выдавать энергию Богучанская ГЭС. Создана мощная единая энергосистема страны. В последние годы наблюдается наиболее мощный подъём в данной отрасли.

Электрификация предполагает изменения не только в области энергии, но и общую реконструкцию народного хозяйства с широким применением механизации и автоматизации производственных процессов, с внедрением на всех участках производства новейшей техники. Электрификация производит такие коренные сдвиги в системе производительных сил, которые по своим последствиям равнозначны новому промышленному перевороту. Непосредственное использование энергии в производственных целях выступает лишь заключительным этапом энергетических преобразований. Прежде чем попасть к потребителю, энергия должна быть получена в ее первичной форме, преобразована в наиболее удобную для передачи и распределения форму, т.е. в форму электрической энергии, и доставлена при помощи различных линейных устройств к месту потребления.

Следовательно, процесс энергоснабжения, составляющий техническую сущность электрификации, состоит из трех основных частей: производства, распределения и использования электроэнергии. В соответствии с этой схемой энергоснабжения и для удобства изучения разделим рассмотрение многогранного и взаимообусловленного развития электрификации на три части: развитие электростанций, развитие техники электропередачи и развитие электропривода и электротехнологии.

Электрификация позволяет использовать природные энергетические ресурсы, более эффективно размещать производительные силы, механизировать и автоматизировать производство, увеличивать производительность труда.

Der kostenlose Auszug ist beendet.

Altersbeschränkung:
0+
Veröffentlichungsdatum auf Litres:
05 März 2019
Schreibdatum:
2014
Umfang:
273 S. 172 Illustrationen
ISBN:
978-5-7638-2995-2
Download-Format:

Mit diesem Buch lesen Leute

Andere Bücher des Autors