Вселенная с нуля. От Большого взрыва до абсолютной пустоты

Text
3
Kritiken
Leseprobe
Als gelesen kennzeichnen
Wie Sie das Buch nach dem Kauf lesen
Keine Zeit zum Lesen von Büchern?
Hörprobe anhören
Вселенная с нуля. От Большого взрыва до абсолютной пустоты
Вселенная с нуля. От Большого взрыва до абсолютной пустоты
− 20%
Profitieren Sie von einem Rabatt von 20 % auf E-Books und Hörbücher.
Kaufen Sie das Set für 9,69 7,75
Вселенная с нуля. От Большого взрыва до абсолютной пустоты
Audio
Вселенная с нуля. От Большого взрыва до абсолютной пустоты
Hörbuch
Wird gelesen Сергей Соколов
5,10
Mit Text synchronisiert
Mehr erfahren
Schriftart:Kleiner AaGrößer Aa

Вселенная упорядочивается


Астрофизики, изучив карту распределения отклонений температуры, созданную с помощью европейского космического зонда «Планк», пришли к выводу, что в эпоху так называемой рекомбинации, ключевой фазы, последовавшей за Большим взрывом и сделавшей Вселенную прозрачной, пространство было поразительно однородным. Современную Вселенную на очень больших масштабах тоже можно считать однородной, но в рамках небольших объемов это вовсе не так. Последние астрономические открытия показали, что во Вселенной огромные структуры граничат с не менее огромными бездонными пустотами.

Каким же образом бывший столь однородным спустя четыреста тысяч лет после начала расширения мир стал неоднородным, а материя сконденсировалась в звездах и галактиках, которые, в свою очередь, сформировали скопления и сверхскопления, разделенные огромными пустотами? Астрофизики очень давно пытаются восстановить историю этого процесса. Они неплохо понимают первичное состояние Вселенной, отраженное в данных, собранных зондом «Планк», и ее конечное состояние, о котором рассказывают последние открытия.

Сегодня астрофизики, выполнив с помощью самых мощных на планете компьютеров моделирование процессов, происходивших во Вселенной, могут описать основные этапы развития Вселенной после рекомбинации.

Далее в нашем рассказе мы отбросим хронологическую систему, которой пользовались до сих пор, и вернемся к обычному человеческому календарю. Однако внимание: доказав универсальность и неизменность скорости света, Эйнштейн лишил время свойств абсолюта, которые приписывали этому физическому параметру ученые XIX века. Наша хронология подходит только для землян и ни в коем случае не имеет отношения к идее универсального времени. Если нашу книгу вдруг переиздадут в другой галактике, хронологию событий придется переделать…

13,7 миллиарда лет назад
Темные века

Небольшие флуктуации температуры, наблюдаемые на картах реликтового излучения, свидетельствуют о сгустках сверхплотной материи, которые несли в себе зародыши будущих крупных структур Вселенной.

Когда через триста восемьдесят тысяч лет после Большого взрыва Вселенная стала прозрачной, она была все еще очень плотной и очень горячей. И она была практически однородной – плотность материи сохранялась почти неизменной в любой точке пространства. Ситуация кардинально отличалась от той, что мы наблюдаем сегодня: Вселенная нынче кажется нам неоднородным нагромождением небесных тел. Галактики, звезды которых плавают в достаточно плотном межзвездном пространстве, соседствуют с зияющей пустотой. Переход от одного состояния к другому, как бы «подростковый» период Вселенной, закончился тогда, когда барионная материя сконденсировалась в процессе образования первых звезд. До этого, в течение двухсот миллионов лет после рекомбинации, во Вселенной царил мрак: по мере охлаждения пространства свет постепенно исчезал, все его источники гасли; именно поэтому этот период получил название «темных веков».

Каким же образом Вселенная умудрилась из примитивного первичного состояния перейти к удивительному разнообразию наших дней? Поразительное многообразие форм присуще прежде всего наблюдаемой материи – барионной, которой во Вселенной не так уж и много. Гораздо в больших количествах повсюду присутствует материя темная, чья природа до сих пор неизвестна. До рекомбинации образование флуктуаций плотности блокировалось взаимодействием между материей и излучением, о чем свидетельствуют наблюдения фонового реликтового излучения. Но стоило ядрам и электронам объединиться в атомы, как сразу появилась почва для образования этих начальных флуктуаций – Вселенная стала нейтральной. Изобилие темной материи привело к тому, что начальные флуктуации плотности быстро начали концентрироваться под влиянием собственной гравитации.

Уплотняясь и коллапсируя, темная материя увлекала за собой барионную. Таким образом, начали формироваться небольшие сгустки размером с карликовую галактику. Переварившись в тигле темной материи, барионная материя концентрировалась и одновременно фрагментировала, образуя звезды. Они начинали светиться, и по Вселенной поплыли волны ультрафиолетовых излучений, готовых вновь снять шкурку с атомов, остававшихся нейтральными после рекомбинации. Началась настоящая реионизация среды, распространявшаяся от одного атома к другому. Темные века закончились примерно через двести миллионов лет. Вселенная пришла в состояние, в котором мы ее знаем, и для него характерно огромное разнообразие звезд.


☛ СМ. ТАКЖЕ

Возникновение материи (10–12 секунд после начала расширения)

Материя побеждает антиматерию (10–6 секунд после начала расширения)

Вселенная становится прозрачной (380 тысяч лет после начала расширения)

Образование крупных структур (13,7 миллиарда лет назад)

Рождение самой древней из известных звезд (13,6 миллиарда лет назад)

13,7 миллиарда лет назад
Образование крупных структур

Компьютерное моделирование позволяет проследить, как из первичных неоднородностей плотности сформировались крупные структуры, и создать модели, очень близкие к реально наблюдаемым.

Большинство космологов полагает, что особенности эволюции Вселенной, начиная с фазы рекомбинации и образования крупных структур, вплоть до наших дней, лучше всего объясняются с помощью предположения о существовании во Вселенной большого количества темной материи. Ее намного больше, чем материи барионной; она предположительно состоит из массивных частиц, движущихся с очень небольшими, по сравнению со скоростью света, скоростями. Цифровое моделирование, применяемое все шире и активнее, позволяет получить весомые аргументы в пользу этого предположения. Эта модель получила название «холодной темной материи», и оно связано с предположением о низкой скорости движения ее частиц.

Когда развитие физической системы необходимо описать уравнением, нужно определить ее начальное и конечное состояния. Именно так обстоит дело и со Вселенной, с ее превращениями с момента рекомбинации до наших дней. Для того чтобы определить исходное состояние системы, достаточно обратиться к данным, полученным при наблюдениях реликтового фонового излучения; самые точные данные были получены европейским космическим зондом «Планк». Что же касается конечного состояния, то его можно определить из последних астрономических наблюдений. С помощью цифрового моделирования на самых совершенных компьютерах, какими располагает международное научное объединение Virgo, космологи смогли описать эволюцию Вселенной от момента возникновения мельчайших флуктуаций плотности в эпоху рекомбинации до наблюдаемого тринадцать миллиарда лет спустя состояния, когда материя сконцентрировалась в галактики, сгруппированные в скопления, в узлы гигантской космической сети, разделенные зияющими между ними огромными пустотами.


Финальный результат моделирования коллективом Virgo эволюции вырезанного из Вселенной куба со сторонами длиной более двух миллиардов световых лет. В 2005 году космологи Virgo, используя одно из самых мощных вычислительных устройств на планете, реконструировали эволюцию двадцати миллионов галактик, рассеянных в этом невероятном по объему пространстве.


Моделирование отводит холодной темной материи весьма важное место: получается, что первыми структурами, которые сформировались за сто миллионов лет, стали протогалактики массой порядка ста миллионов солнечных масс. Эти объекты пережили впоследствии череду слияний, приведших к образованию галактик, средняя масса которых достигала ста миллиарда солнечных масс. Британский астрофизик Мартин Рис вместе с другими учеными активно пропагандируют эту гипотезу, получившую название «восходящей эволюции структур», в ходе которой формируются все более и более массивные объекты. Гипотеза, использующая противоположную модель «горячей темной материи» и получившая название «нисходящей эволюции», практически ушла с научных горизонтов еще в 1980-е годы, поскольку она вошла в глубокое противоречие с данными современных астрономических открытий.


☛ СМ. ТАКЖЕ

Возникновение материи (10–12 секунд после начала расширения)

Материя побеждает антиматерию (10–6 секунд после начала расширения)

Вселенная становится прозрачной (380 тысяч после начала расширения)

Темные века (13,7 миллиарда лет назад)

13,6 миллиарда лет назад
Рождение самой древней из известных звезд

Звезда второго поколения зажглась в одной из протогалактик, сливавшихся друг с другом при образовании будущего Млечного Пути. Это одна из самых древних из всех известных звезд.

Работая в обществе, где всем заправляет логика продвижения личных достижений, ученые больше не стесняются производить сенсации. Они рассчитывают таким образом привлечь внимание организаций, готовых финансировать их исследования. Астрофизики тоже принимают участие в этом соревновании и активно распространяют громкие новости о необычных небесных объектах, таких, например, как первые звезды, которые начали светить еще в темные века. Появление звезд ознаменовало важный поворот в истории Вселенной. Именно внутри них начался синтез химических элементов, разнообразие которых прежде, в эпоху первичного ядерного синтеза, исчерпывалось гелием.

В одной из протогалактик, находившейся в процессе слияния с другими – такие же процессы гораздо позже привели к образованию и нашего Млечного Пути, – сформировалась первая россыпь звезд. Они образовались из газообразных водорода и гелия, единственных элементов, порожденных Большим взрывом. Самые массивные звезды, длительность жизни которых была относительно короткой, обогатили эту среду первыми «металлами», произведенными в их недрах. Астрофизики называют металлами все элементы, отличающиеся от гелия и водорода (хотя с химической точки зрения углерод или кислород к металлам не относятся), а их относительное содержание в газовом облаке именуют «металличностью». Новые поколения звезд формировались в среде, которая характеризовалась очень невысоким уровнем металличности. Наименее массивные из них, с самой длительной продолжительностью жизни, светят нам и в XXI веке. Астрофизики уделяют большое внимание их поиску, поскольку эти звезды с небольшим содержанием металлов представляют собой настоящие живые ископаемые, видевшие начало звездообразования во Вселенной.

 

В 2014 году международная группа астрофизиков заявила об открытии самой старой из когда-либо наблюдавшихся звезд (ей 13,6 миллиарда лет). Ее обнаружили при сканировании неба в южном полушарии с помощью широкоугольного телескопа австралийской обсерватории Сайдинг-Спринг в Новом Южном Уэльсе. Эта звезда получила номер SMSS 0313–6708. Она расположена на расстоянии около шести тысяч световых лет от Земли и содержит очень мало железа, что и свидетельствует об ее почтенном возрасте. Согласно данным, полученным с помощью одного из двух телескопов «Магеллан» американской обсерватории Лас-Кампанас в Чили, содержание железа в звезде SMSS 0313–6708 по меньшей мере в миллион раз меньше, чем в Солнце! Астрофизики полагают, что эта звезда образовалась в результате взрыва значительно более массивной первичной звезды (массой в шестьдесят солнц).


☛ СМ. ТАКЖЕ

Большой взрыв (Начало расширения)

Образование гелия (3 минуты после начала расширения)

Окончание первичного ядерного синтеза (20 минут после начала расширения)

Темные века (13,7 миллиарда лет назад)

Образование диска Млечного Пути (8,8 миллиарда лет назад)

13,4 миллиарда лет назад
Галактика уже ярко сияет

В 2015 году астрофизики, сканируя небо в инфракрасном диапазоне, обнаружили галактику, свет от которой, испущенный непосредственно после темных веков, только теперь дошел до нас в своей первозданности.

Через триста восемьдесят тысяч лет после Большого взрыва Вселенная была электрически нейтральной и уже достаточно холодной для того, чтобы электроны, носители отрицательного электрического заряда, надолго связались с атомными ядрами (в основном в форме водорода и гелия), появившимися в более ранние эпохи и заряженными изначально положительно. Но ситуация вновь перевернулась примерно миллиард лет спустя. Вселенная снова пережила ионизацию, влияние которой проявляется даже в наши дни. Под воздействием разрушительных ультрафиолетовых излучений атомы водорода потеряли все свои электроны, и все ядра вновь стали ионами.

Когда же примерно произошла «реионизация» водорода? Какие источники смогли испустить столь мощные ультрафиолетовые лучи, которым было под силу разорвать на части все атомы водорода во Вселенной? Астрофизики, чтобы найти первые звезды, осветившие темные века ультрафиолетовым излучением, попробовали исследовать самые далекие светила. Для оценки расстояния они использовали данные, связанные с расширением Вселенной, растяжение ткани самого пространства, которое тем более увеличивает длину волны излучения, чем дальше от нас его источник. Это увеличение длин волн называется «красным смещением» (по-английски – redshift) – в видимом спектре самые длинные волны – красные.

В 2016 году международная группа астрофизиков, возглавляемая американцем Паскалем Ойшем, опубликовала результаты наблюдений далекой галактики GN-z11, проведенных в инфракрасном диапазоне Космическим телескопом Хаббла. Эти наблюдения основывались на данных, полученных ранее на самых длинных волнах инфракрасного спектра космическим телескопом Спицера. Именно этот телескоп и обнаружил галактику GN-z11, по размерам в двадцать пять, а по суммарной массе звезд в сто раз меньшую Млечного Пути. Зато эта галактика-эмбрион производит в двадцать раз больше звезд в единицу времени, чем наша. Красное смещение z, которое измерили Ойш и его коллеги, оказалось равным 11,09 – в 2016 году это была самая далекая от нас галактика из всех известных. А тот факт, что она ярко светилась уже через четыреста миллионов лет после Большого взрыва, позволяет сделать вывод, что первые галактики Вселенной, вроде GN-z11, стали основными действующими лицами процесса реионизации.


☛ СМ. ТАКЖЕ

Большой взрыв (Начало расширения)

Вселенная становится прозрачной (380 тысяч лет после начала расширения)

Темные века (13,7 миллиарда лет назад)

Образование крупных структур (13,7 миллиарда лет назад)

Рождение самой древней из известных звезд (13,6 миллиарда лет назад)

13,2 миллиарда лет назад
Катастрофическая смерть первой звезды

Массивная звезда закончила свою короткую эволюцию мощнейшим гамма-всплеском – одним из самых мощных взрывов за всю историю Вселенной.

Не успели астрофизики разделить звезды Млечного Пути на поколение I и поколение II в зависимости от их возраста, как им пришлось ввести в классификацию и поколение III – первых звезд Вселенной. Обнаружить их не удалось, поэтому ученые пришли к выводу, что их жизнь была слишком короткой по сравнению со звездами, которые пришли им на смену. Звезды поколения III должны были быть и более массивными: в среде, лишенной элементов, более тяжелых, чем гелий, существующие модели звездообразования допускают только образование звезд массой в несколько сотен солнечных – слишком массивных для того, чтобы дожить до наших дней.

Непосредственно наблюдать звезды поколения III уже нельзя, однако можно обнаружить те колоссальные всплески гамма-излучения, которые некоторые из них испустили в конце своей довольно короткой жизни. Модель эволюции сверхмассивной звезды предполагает, что через несколько миллионов лет после образования ее ядро может схлопнуться в черную дыру. Окруженная остатками разрушенной звезды, дыра испускает в противоположных направлениях два потока материи, разогнанных до околосветовых скоростей. Истечение этих струй сопровождается самыми мощными всплесками энергии во Вселенной. Во-первых, струи распространяются с огромной скоростью и возникающие в них чудовищные ударные волны порождают мощное гамма-излучение. Во-вторых, в этом процессе формируется и остаточное излучение на всех длинах волн. Однако это излучение быстро ослабевает при взаимодействии с межзвездной средой.

Всплески гамма-излучения бывают настолько яркими, что астрофизики могут обнаружить их на очень больших расстояниях, вплоть до границ наблюдаемой Вселенной. Два телескопа космической обсерватории Neil Gehrels Swift, один из которых работал в диапазоне гамма-излучения, а второй – в рентгеновском диапазоне, засекли 23 апреля 2009 года гамма-всплеск в области галактики GRB 090423 и определили достаточно точные координаты его источника. На основе этих данных международная группа астрофизиков, возглавляемая британцем Найджелом Танвиром, с помощью VLT (англ. Very Large Telescope – Очень Большой Телескоп) определила спектральные характеристики остаточного излучения. Их исследование позволило Танвиру и его коллегам оценить красное смещение GRB 090423. Его величина оказалась огромной (z = 8,2) – это был самый отдаленный всплеск энергии, когда-либо наблюдавшийся учеными. Массивная звезда, ставшая причиной этого всплеска, закончила свое существование на исходе темных веков, в конце периода реионизации.

СМ. ТАКЖЕ

Темные века (13,7 миллиарда лет назад)

Рождение самой древней из известных звезд (13,6 миллиарда лет назад)

Гамма-всплеск, видимый невооруженным глазом (7,7 миллиарда лет назад)

12,6 миллиарда лет назад
Появление первых скоплений галактик

Когда Вселенной исполнился миллиард лет, в ней начали образовываться первые скопления галактик. Заглядывая в глубину пространства и времени, астрономы могут наблюдать их формирование.

Основываясь на компьютерных моделях, построенных на гипотезе о темной холодной материи, астрофизики считают, что эволюцию Вселенной можно назвать «восходящей» – Вселенная развивается в направлении образования все более массивных структур. В такой иерархической схеме «от самых маленьких к самым массивным» гигантские скопления галактик становятся наследниками «протоскоплений», постепенно формировавшихся агломераций первичных галактик. Вполне возможно, что в этих протоскоплениях находили прибежище и галактики с так называемым активным ядром, то есть со сверхмассивной черной дырой в центре. Дыра служила точкой аккреции материи из межзвездного пространства; в результате происходили мощные выбросы излучения во всех диапазонах спектра.

В отдаленном уголке космоса, в среде, насыщенной темной и барионной материей, крупная структура может сформироваться путем слияния большого количества скоплений галактик, в свою очередь сформированных в результате последовательных слияний протогалактик. Гигантское протоскопление галактик, общая масса которого составляет как минимум четыреста миллиарда солнечных масс, растягивается на расстояние более сорока миллионов световых лет. Высокая плотность галактик внутри этой огромной структуры приводит к огромному количеству столкновений и поглощений, которые порождают вспышки звездообразования. Протоскопление постепенно растет за счет присоединения новых и новых галактик, в которых начинается образование молодых массивных звезд. В недрах некоторых из этих галактик вполне могут сложиться условия, благоприятные для образования сверхмассивных черных дыр и возникновения активных галактических ядер.

В 2011 году международная группа астрофизиков во главе с американским ученым Питером Капаком исследовала расположенное в созвездии Секстанта скопление активных галактик, все члены которого имели одно и то же высокое красное смещение (z = 5,3). Капак и его коллеги начали сканировать предполагаемое протоскопление в рентгеновском диапазоне с помощью космического телескопа «Чандра», чтобы обнаружить активные ядра галактик – они излучают именно в этом диапазоне. Затем ученые провели такие же исследования на других телескопах, чтобы выявить галактики, в которых образование звезд постепенно угасало. Они вооружились целой батареей телескопов, в числе которых был и космический телескоп «Хаббл», изучая одну галактику за другой и оценивая их красные смещения.


☛ СМ. ТАКЖЕ

Темные века (13,7 миллиарда лет назад)

Образование крупных структур (13,7 миллиарда лет назад)

Ланиакея, наше сверхскопление (6,8 миллиарда лет назад)

Радиус Шварцшильда (1916)