Bestseller

Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества

Text
4
Kritiken
Leseprobe
Als gelesen kennzeichnen
Wie Sie das Buch nach dem Kauf lesen
Keine Zeit zum Lesen von Büchern?
Hörprobe anhören
Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества
Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества
− 20%
Profitieren Sie von einem Rabatt von 20 % auf E-Books und Hörbücher.
Kaufen Sie das Set für 13,12 10,50
Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества
Audio
Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества
Hörbuch
Wird gelesen Игорь Гмыза
7,57
Mit Text synchronisiert
Mehr erfahren
Schriftart:Kleiner AaGrößer Aa

Глава 6. РНК

Центральная догма

Чтобы научиться не только читать, но и писать человеческий геном, необходимо было переключить внимание с ДНК на ее менее известную родственницу, которая в реальности выполняет закодированные инструкции. РНК (рибонуклеиновая кислота) – это содержащаяся в живых клетках молекула, которая похожа на ДНК (дезоксирибонуклеиновую кислоту), но имеет дополнительный атом кислорода в сахарофосфатном остове и отличается одним из четырех оснований.

В мире, пожалуй, нет молекулы известнее, чем ДНК, которая появляется на обложках журналов и используется в качестве метафоры для характеристик, неотъемлемо присущих обществу или организации. Однако, как часто бывает с более знаменитыми родственниками, ДНК не перегружена работой. В основном она находится дома, в ядрах наших клеток, которые почти не покидает. Главным образом она охраняет информацию, которую кодирует, и периодически воспроизводит саму себя. РНК, напротив, выполняет настоящую работу. Вместо того чтобы сидеть дома и беречь информацию, она создает реальные продукты, например белки. Будьте внимательны к ней. В этой книге – а также в карьере Даудны – она будет блистать во всем, от CRISPR до COVID.

Когда велась работа в рамках проекта “Геном человека”, РНК по большей части считали информационной молекулой, которая переносит инструкции от ДНК, находящейся в клеточных ядрах. Маленький сегмент ДНК, кодирующий ген, транскрибируется во фрагмент РНК, который затем перемещается в производственную зону клетки. Там “информационная РНК” запускает сборку нужной последовательности аминокислот для создания конкретного белка.

Существует множество типов таких белков. Например, фибриллярные белки формируют такие структуры, как кости, ткани, мышцы, волосы, ногти, сухожилия и клетки кожи. Мембранные белки передают сигналы внутри клеток. Самый удивительный тип белков – ферменты, или энзимы. Они служат катализаторами процессов. Они запускают, ускоряют и замедляют химические реакции во всех живых организмах. Почти все, что происходит в клетке, требует участия фермента-катализатора. Обратите внимание на ферменты. В этой книге они будут сиять вместе с РНК, становясь ее партнерами в танце.

Через пять лет после открытия структуры ДНК Фрэнсис Крик, принявший в этой работе непосредственное участие, дал название процессу перемещения генетической информации от ДНК к РНК и построения белков. Он назвал его “центральной догмой” молекулярной биологии. Позже он признал, что не слишком удачно выбрал слово “догма”, предполагающее неизменную и непререкаемую веру[35]. Но слово “центральный” подходило как нельзя лучше. Хотя догма и была скорректирована, процесс остался центральным для биологии.

Рибозимы

Одно из первых изменений в центральной догме произошло, когда Томас Чек и Сидни Олтмен независимо друг от друга открыли, что белки – это не единственные в клетке молекулы, которые могут быть ферментами. В начале 1980-х они провели исследование, которое впоследствии принесло им Нобелевскую премию, и неожиданно обнаружили, что некоторые формы РНК тоже могут быть ферментами. В частности, они открыли, что некоторые молекулы РНК могут делиться, запуская химические реакции. Они назвали такие каталитические РНК “рибозимами”, составив термин из понятий “рибонуклеиновая кислота” и “энзимы”[36].

Чек и Олтмен совершили это открытие, изучая интроны. Некоторые фрагменты нуклеотидных последовательностей не кодируют инструкции по созданию белков. Когда такие последовательности транскрибируются в молекулы РНК, они начинают мешать нормальной работе молекулы. В связи с этим их необходимо отрезать, осуществляя так называемый сплайсинг, прежде чем РНК сможет продолжить свою миссию по руководству строительством белков. Чтобы вырезать интроны и заново соединять полезные фрагменты РНК, нужен катализатор, роль которого обычно выполняет белковый фермент. Но Чек и Олтмен обнаружили, что некоторые интроны РНК выполняют сплайсинг самостоятельно!

Это открытие имеет любопытные последствия. Если некоторые молекулы РНК могут хранить генетическую информацию и также выступать в качестве катализаторов химических реакций, то они могут играть более важную роль в происхождении жизни, чем ДНК, которая не может естественным образом воспроизводиться в отсутствие белков, запускающих химические реакции[37].

РНК, а не ДНК

Когда весной 1986 года Даудне больше не нужно было менять лаборатории, она спросила Джека Шостака, может ли она остаться в его лаборатории и заняться диссертационным исследованием под его руководством. Шостак согласился, но с оговоркой. Он больше не собирался заниматься ДНК дрожжей. Пока другие биохимики восторженно обсуждали секвенирование ДНК в проекте “Геном человека”, он решил переключиться на РНК, которая, как он полагал, могла раскрыть секреты, приблизив ученых к разгадке главной из биологических загадок – загадки о происхождении жизни.

Шостак сказал Даудне, что заинтересовался открытиями Чека и Олтмена, показавшими, что некоторые молекулы РНК имеют каталитические свойства ферментов. Он намеревался выяснить, могут ли рибозимы использовать эту способность для самовоспроизводства. “Хватит ли этому фрагменту РНК химических силенок, чтобы создать свою копию?” – спросил он у Даудны. Он предложил, чтобы именно этим она и занялась в своем диссертационном исследовании[38].

Заразившись энтузиазмом Шостака, Даудна вызвалась стать первой в этой лаборатории аспиранткой, работающей над РНК. “Когда я изучала биологию, нам подробно расписывали структуру и код ДНК и говорили, что всю тяжелую работу в клетках выполняют белки, в то время как РНК считали бестолковым посредником, своего рода руководителем среднего звена, – вспоминает Даудна. – Я очень удивилась, когда выяснилось, что в Гарварде работает молодой гений Джек Шостак, который хочет на сто процентов посвятить себя исследованию РНК, поскольку считает ее ключом к разгадке тайны о происхождении жизни”.

И для Шостака, который уже завоевал авторитет, и для Даудны, которая пока еще не имела солидной репутации, решение заняться РНК было рискованным. “Вместо того чтобы вместе со всеми изучать ДНК, – вспоминает Шостак, – мы решили стать первопроходцами в новой сфере, отправиться на новые рубежи, которые были несколько обделены вниманием, но нам казались весьма интересными”. Это было задолго до того, как в РНК увидели технологию, которая позволяет оказывать влияние на экспрессию генов и вносить изменения в человеческие гены. Шостак и Даудна обратились к РНК из чистого любопытства, в стремлении разобраться, как работает природа.

У Шостака был принцип: “Никогда не делай того, чем занимается еще тысяча человек”. Даудне он пришелся по душе. “Это было как на футбольном поле, где я хотела играть на позиции, которую не жаловали другие дети, – говорит она. – Джек научил меня, что, вторгаясь на неизведанную территорию, рискуешь сильнее, но при этом получаешь возможность выиграть больше”.

К тому времени она знала, что важнее всего при изучении природного явления понять, как устроены участвующие в нем молекулы. Для этого ей нужно было освоить некоторые техники, использовавшиеся Уотсоном, Криком и Франклин при изучении структуры ДНК. Если бы у них с Шостаком все получилось, это могло бы стать большим шагом к ответу на один из самых главных биологических вопросов, а возможно, и на самый главный вопрос: как зародилась жизнь?

Происхождение жизни

Шостак загорелся идеей узнать, как зародилась жизнь, и его энтузиазм преподнес Даудне второй важный урок: поняв, что не стоит бояться рисковать, вторгаясь на новые территории, она также осознала, что ученому положено задавать грандиозные вопросы. Хотя Шостаку нравилось погружаться в детали экспериментов, он постоянно размышлял на поистине глубокие темы. “Зачем еще заниматься наукой?” – говорил он Даудне. И этот вопрос стал одним из ее руководящих принципов[39].

 

Существуют великие вопросы, на которые мы, смертные, возможно, никогда не найдем ответа: как зародилась Вселенная? почему в мире есть что-то, когда могло бы не быть ничего? что такое сознание? Есть и вопросы, которые, возможно, поддадутся нам до конца этого столетия: все ли во Вселенной предопределено? обладаем ли мы свободой воли? Если говорить о грандиозных вопросах, то ближе всего мы подошли к ответу на вопрос о происхождении жизни.

Центральная догма биологии требует наличия ДНК, РНК и белков. Поскольку маловероятно, чтобы все они одновременно выплыли из первичного бульона, в начале 1960-х годов появилась гипотеза, которую независимо друг от друга сформулировали вездесущий Фрэнсис Крик и другие ученые, и она гласит, что ранее существовала более простая система. Крик предположил, что на заре земной истории РНК была способна к самовоспроизводству. Это оставляет открытым вопрос, откуда появилась первая РНК. Некоторые полагают, что ее источником был космос. Но, возможно, дело обстояло проще и на Земле в доисторические времена присутствовали химические составляющие РНК, которые соединялись друг с другом в результате естественного случайного смешивания. В тот год, когда Даудна пришла в лабораторию Шостака, биохимик Уолтер Гилберт назвал эту гипотезу “миром РНК”[40].

Неотъемлемое свойство живых существ заключается в том, что они владеют методом создания новых организмов, подобных себе: они способны к воспроизводству. Следовательно, если вы хотите сказать, что РНК могла быть молекулой-предшественником, которая привела к зарождению жизни, полезно будет продемонстрировать процесс ее самовоспроизводства. Именно такую цель и поставили перед собой Шостак и Даудна[41].

Даудна применяла множество тактик для создания РНК-фермента, или рибозима, который мог бы связывать маленькие фрагменты РНК. В конце концов они с Шостаком смогли создать рибозим, который с помощью сплайсинга производил собственную копию. “Эта реакция демонстрирует возможность воспроизводства РНК при использовании РНК в качестве катализатора”, – написали Даудна и Шостак в статье, вышедшей в журнале Nature в 1989 году. Биохимик Ричард Лифтон позже назвал эту статью “чудом технического мастерства”[42]. Даудна стала восходящей звездой царства исследований РНК. Пока оно оставалось на задворках биологии, но в последующие два десятилетия знания о поведении маленьких фрагментов РНК обрели большую важность как в сфере редактирования генома, так и для борьбы с коронавирусами.

В аспирантуре Даудна приобрела особую комбинацию навыков, которая отличала Шостака и других великих ученых: она прекрасно справлялась с проведением экспериментов и также задавала грандиозные вопросы. Она понимала, что дьявол в деталях, но при этом не забывала об общей картине. “Дженнифер была великолепна в лаборатории, потому что делала все быстро и точно, у нее в руках все спорилось, – говорит Шостак. – Но еще мы говорили о том, почему важно задавать поистине грандиозные вопросы”.

Даудна также оказалась отличным командным игроком, что очень радовало Шостака, который сам был таким же, как и Джордж Черч и некоторые другие ученые из Гарвардской медицинской школы. Это видно по количеству соавторов в большинстве ее статей. В научных публикациях первым указывается автор – как правило, молодой исследователь, – который проводил большую часть экспериментов, а последним – научный руководитель или директор лаборатории. Перечисленные в середине обычно выстраиваются по значимости внесенного вклада. В одной из важных статей для журнала Science, с подготовкой которой Даудна помогала в 1989 году, ее имя стоит в середине списка, потому что в то время она была наставником удачливого гарвардского студента-бакалавра, подрабатывавшего в лаборатории, и посчитала, что ведущим автором должен стать студент. В последний год работы в лаборатории Шостака ее имя появилось в списке авторов четырех научных статей в престижных журналах, и во всех них описывалось, как молекулы РНК осуществляют самовоспроизводство[43].

Шостак также отметил готовность и даже желание Даудны решать трудные проблемы. Это стало очевидно ближе к завершению ее работы в лаборатории Шостака в 1989 году. Она поняла, что сможет разобраться в работе фрагментов РНК, осуществляющих самосплайсинг, только если изучит его строение атом за атомом. “В то время считалось, что структура РНК настолько сложна, что ее, возможно, не удастся открыть, – вспоминает Шостак. – Почти никто уже и не пытался”[44].

Знакомство с Джеймсом Уотсоном

Первое выступление Дженнифер Даудны на научной конференции состоялось в лаборатории в Колд-Спринг-Харбор, и Джеймс Уотсон на правах хозяина сидел, как обычно, в первом ряду. Было лето 1987 года, и он организовал семинар, чтобы обсудить “эволюционные события, которые могли дать толчок к появлению живых организмов, ныне существующих на Земле”[45]. Иными словами: как зародилась жизнь?

На конференции главным образом обсуждали недавние открытия, демонстрирующие, что некоторые молекулы РНК способны к самовоспроизводству. Поскольку Шостак не мог участвовать, Даудну, которой было всего двадцать три года, пригласили вместо него представить их работу над созданием самовоспроизводящейся молекулы ДНК. Получив подписанное Уотсоном письмо, адресованное “уважаемой мисс Даудне” (она еще не стала доктором Даудной), она не только тотчас приняла приглашение, но и поместила письмо в рамку.

Ее выступление, основанное на статье, написанной в соавторстве с Шостаком, изобиловало техническими подробностями. “Мы описываем делеции и замены в каталитическом и субстратном доменах самосплайсирующегося интрона”, – начала она. Такое предложение не может не взволновать исследователей-биологов, и Уотсон принялся делать заметки, внимательно слушая. “Я так сильно нервничала, что у меня ладони вспотели”, – вспоминает Даудна. Но по окончании выступления Уотсон поздравил ее, а Том Чек, который провел исследование интронов, проложившее дорогу к статье Даудны и Шостака, наклонился и шепнул: “Отличная работа”[46].

На конференции Даудна решила прогуляться по кампусу. По дороге она встретила слегка сутуловатую женщину. Это была биолог Барбара Макклинток, которая более сорока лет работала в Колд-Спринг-Харбор и недавно получила Нобелевскую премию за открытие транспозонов, или “прыгающих генов”, которые могут перемещаться в геноме. Даудна остановилась, но постеснялась представиться. “Мне показалось, что я стою рядом с богиней, – говорит она, по-прежнему с восхищением. – Вот женщина, такая знаменитая и невероятно авторитетная, как ни в чем не бывало идет в лабораторию, обдумывая следующий эксперимент. Она была той, кем я хотела стать”.

Даудна осталась на связи с Уотсоном и впоследствии посетила множество устроенных им конференций в Колд-Спринг-Харбор. С годами он становился все более скандальным, бесконтрольно высказывая свои соображения о генетических различиях между расами. Даудна старалась не допустить, чтобы из-за такого поведения у нее пропало уважение к его научным достижениям. “Когда мы встречались, он часто говорил что-нибудь, что считал провокационным, – говорит она, смеясь и словно оправдываясь. – Таким уж он был. Вы ведь понимаете”. Хотя Уотсон нередко во всеуслышание высказывался о внешнем виде женщин, начав с описания Розалинд Франклин в “Двойной спирали”, он был для них хорошим наставником. “Он оказал большую поддержку моей близкой подруге, когда она была постдоком, – говорит Даудна. – И это повлияло на мое мнение о нем”.

Глава 7. Новые повороты

Структурная биология

С тех самых пор, как Даудна заинтересовалась чувствительными к прикосновениям листьями сонной травы, которую она находила в детстве, гуляя на Гавайях, она проявляла огромное любопытство к изучению механизмов природы. Почему листья похожего на папоротник растения сворачивались, когда до них дотрагивались? Как химические реакции вызывают биологическую активность? Даудна научилась замирать, как мы все порой замираем в детстве, и задумываться над устройством вещей.

Биохимия давала множество ответов, показывая, как ведут себя химические молекулы в живых клетках. Но была и сфера, которая заглядывала еще глубже в мир природы: структурная биология. Вооруженные техниками визуализации, например рентгеновской кристаллографией, которую Розалинд Франклин применяла для поиска данных о структуре ДНК, специалисты по структурной биологии пытаются определить трехмерную форму молекул. В начале 1950-х годов Лайнус Полинг открыл спиральную структуру белков, а затем вышла статья Уотсона и Крика о двойной спиральной структуре ДНК.

Даудна поняла, что, если она действительно хочет разобраться, как некоторые молекулы РНК осуществляют самовоспроизводство, ей необходимо лучше изучить структурную биологию. “Чтобы понять, как такие РНК занимаются химией, – говорит она, – мне нужно было выяснить, как они выглядят”. В частности, ей необходимо было установить, каковы особенности трехмерной структуры самосплайсирующейся РНК. Она понимала, что ее работа в таком случае будет перекликаться с работой Франклин над ДНК, и эта параллель ей нравилась. “Она руководствовалась подобным вопросом о химической структуре молекулы, которая лежит в основе всей жизни, – говорит Даудна. – Она верила, что ее структура сможет о многом рассказать”[47].

 

Восходящая звезда в Йеле


Кроме того, Даудна подозревала, что изучение структуры рибозима откроет путь к созданию прорывных генетических технологий. Когда Томас Чек и Сидни Олтмен получали Нобелевскую премию, в речи на вручении премии прозвучал намек на это: “В будущем у нас, вероятно, появится возможность лечить некоторые генетические болезни. Такое применение «генетических ножниц» потребует более полного представления о молекулярных механизмах”. Генетические ножницы. Нобелевский комитет, несомненно, проявил прозорливость.

Новая задача предполагала, что настала пора покинуть лабораторию Джека Шостака, который признавал, что не силен ни в визуальном мышлении, ни в структурной биологии. В результате в 1991 году Даудна стала выбирать новое место работы. Впрочем, выбор был очевиден – работа со специалистом по структурной биологии, только что разделившим Нобелевскую премию за открытие каталитической РНК, которую изучали Даудна и Шостак, Томасом Чеком из Колорадского университета в Боулдере, применявшим рентгеновскую кристаллографию для исследования всех мельчайших деталей структуры РНК.

Томас Чек

Даудна уже была знакома с Чеком. Именно он шепнул: “Отличная работа” после ее взволнованного выступления на конференции в Колд-Спринг-Харбор летом 1987 года. Она снова встретилась с ним, когда в тот же год приехала в Колорадо. “Поскольку мы были своего рода дружественно настроенными соперниками и оба стремились лучше изучить самосплайсирующиеся интроны, я отправила ему письмо”, – вспоминает она.

Это было настоящее письмо, написанное на бумаге, потому что электронная почта была еще не в ходу. Она написала, что будет проездом в Боулдере, и спросила, можно ли посетить его лабораторию. К ее удивлению, он очень быстро вышел на связь и однажды позвонил ей в лабораторию Шостака. “Тебя к телефону! Это Том Чек”, – сказал ей коллега, который взял трубку. Все в лаборатории с интересом посмотрели на Даудну, но она лишь пожала плечами.

Они с Чеком встретились в Боулдере в субботу. Чек привел в лабораторию свою двухлетнюю дочь, которая сидела у него на коленях, пока он разговаривал с Даудной, совершенно очарованной его умом и отцовскими инстинктами. На этой встрече соперничество соседствовало с сотрудничеством, что характерно для научных исследований (и многих других предприятий). “Думаю, Том встретился со мной, потому что в лаборатории Шостака велись потенциально конкурентные исследования, но при этом были и возможности чему-то научиться друг у друга, – говорит Даудна. – А еще он, наверное, решил, что сможет немного разузнать о планах нашей лаборатории”.

Получив докторскую степень в 1989 году, она решила заняться постдокторской работой с Чеком. “Я поняла, что если я действительно хочу изучить структуру молекул РНК, то логично отправиться в лучшую лабораторию, специализирующуюся на биохимии РНК, – говорит она. – Кто может быть лучше Тома Чека? Именно в этой лаборатории открыли самосплайсирующиеся интроны”.

Том Гриффин

Была и еще одна причина, по которой Даудна решила после получения докторской степени отправиться в Боулдер. В январе 1988 года она вышла замуж за студента Гарвардской медицинской школы Тома Гриффина, который работал в соседней лаборатории. “Он видел во мне некоторые вещи, которых я сама в то время не видела, включая мои способности к науке, – говорит Даудна. – Он побуждал меня быть смелее, чем я была бы без него”.

Гриффин вырос в семье военного и любил Колорадо. “Мы обсуждали, куда можем отправиться по окончании учебы, и он очень, очень хотел переехать в Боулдер, – рассказывает Даудна. – Я поняла, что если мы поедем в Боулдер, то я смогу работать с Томом Чеком”. Они переехали летом 1991 года, и Гриффин устроился на работу в биотехнологический стартап.

Сначала они прекрасно ладили друг с другом. Даудна купила горный велосипед, и они вместе ездили на прогулки вдоль ручья Боулдер-Крик. Она также начала кататься на роликах и ходить на лыжах. Но главной ее страстью оставалась наука, а Гриффин не был столь сосредоточен на одном аспекте жизни. Наука для него была работой, и не более того, ведь у него не было планов стать исследователем. Он любил музыку и книги и вошел в число первых энтузиастов персональных компьютеров. Даудна уважала широкий диапазон его интересов, однако не разделяла их. “Я из тех, кто постоянно думает о науке, – говорит она. – Я всегда сосредоточена на том, что происходит в лаборатории, каким будет следующий эксперимент и какие более общие вопросы мне необходимо задать”.

Даудна полагает, что их различия “говорят не в [ее] пользу”, но я не уверен, что она действительно так считает, и так не считаю и я. Люди по-разному подходят к работе и увлекаются разными вещами. Она хотела вечерами и по выходным сидеть в лаборатории и проводить эксперименты. Не все должны быть такими. Но некоторым нужно.

Через несколько лет Даудна и Гриффин решили развестись и пойти каждый своим путем. “Я была одержима планированием экспериментов, – говорит она. – Он был не так увлечен. И это вбило между нами клин, с которым мы ничего не смогли поделать”.

Структура рибозима

Когда Даудна приехала в Колорадский университет и заняла позицию постдока, ее задачей было изучить интрон, который, как выяснил Чек, мог быть самосплайсирующимся фрагментом РНК, и показать все его атомы, связи и формы. Если бы у нее получилось открыть его трехмерную структуру, это помогло бы продемонстрировать, как особенности строения интрона сводят вместе нужные атомы, чтобы запускать химические реакции и давать фрагменту РНК возможность самовоспроизводиться.

Это было весьма рискованное предприятие, в рамках которого нужно было зайти в ту зону игрового поля, куда не забегал почти никто. В то время работы по кристаллографии РНК почти не велись, и люди в основном смотрели на Даудну как на сумасшедшую. Но если бы у нее получилось, это принесло бы науке огромную выгоду.

Еще в 1970-х годах биологи изучили структуру более мелкой и простой молекулы РНК, но с тех пор на протяжении двадцати лет прогресса в этой сфере почти не наблюдалось, поскольку ученым было сложно изолировать более крупные РНК и получить их изображения. Коллеги говорили Даудне, что в то время попытка получить хороший снимок крупной молекулы РНК была гиблым делом. Чек сказал: “Если бы мы попросили Национальные институты здоровья профинансировать этот проект, нас бы подняли на смех и выгнали вон”[48].

На первом этапе нужно было кристаллизовать РНК – иными словами, преобразовать жидкую молекулу РНК в хорошо организованную твердую структуру. Это было необходимо, чтобы применить рентгеновскую кристаллографию и другие техники визуализации и изучить компоненты и форму молекулы.

Даудне помогал сдержанный, но жизнерадостный студент-магистр Джейми Кейт. Он применял рентгеновскую кристаллографию для изучения структуры белков, но, познакомившись с Даудной, присоединился к ней и занялся РНК. “Я рассказала ему о проекте, над которым работаю, и он очень им заинтересовался, – говорит она. – Это было весьма необычное начинание. Мы понятия не имели, что нам предстоит обнаружить”. Они исследовали новую сферу. Нельзя было даже сказать наверняка, что молекулы РНК, как и белки, обладают четко определенной структурой. В отличие от Тома Гриффина, Кейт был сосредоточен на лабораторной работе. Они с Даудной каждый день разговаривали о том, как кристаллизовать РНК, и вскоре стали продолжать свои беседы за кофе, а порой и за ужином.

Один прорыв произошел случайно, как нередко бывает в науке: была допущена небольшая ошибка, как тогда, когда плесень, выросшая в чашках Петри, забытых Александром Флемингом, привела к открытию пенициллина. Однажды лаборантка работала с Даудной и, пытаясь создать кристаллы, поместила препарат в неисправный инкубатор. Они решили, что эксперимент погублен, но затем, рассмотрев образцы под микроскопом, увидели растущие кристаллы. “Кристаллы содержали РНК и были прекрасны, – вспоминает Даудна, – и этот первый прорыв показал нам, что для формирования этих кристаллов необходимо повысить температуру”.

Другой шаг вперед демонстрирует огромную выгоду от соседства с другими умными людьми. Биохимики Том и Джоан Стейц, муж и жена, изучавшие РНК в Йеле, приехали в Боулдер в годичный академический отпуск. Том отличался особенной общительностью и частенько заходил выпить кофе в столовую лаборатории Чека. Однажды утром Даудна упомянула в разговоре с ним, что получила хорошие кристаллы исследуемой молекулы РНК, но под действием рентгеновских лучей они слишком быстро разрушаются.

Стейц ответил, что в своей йельской лаборатории он испытывал новую технику криогенного охлаждения кристаллов. Кристаллы погружали в жидкий азот, где они очень быстро замерзали. Это помогало сохранить структуру кристаллов, даже когда они подвергались воздействию рентгеновских лучей. Стейц договорился, чтобы она слетала в Йель и пообщалась с работавшими в его лаборатории учеными, которые испытывали эту технику. Все сложилось идеально. “В этот момент мы поняли, что у нас есть кристаллы, которые достаточно упорядочены, чтобы мы в конце концов смогли открыть структуру”, – говорит Даудна.

Йель

Визит в лабораторию Тома Стейца в Йеле, где выделялось финансирование на инновационные техники и такое оборудование, как криокамеры, убедил Даудну принять поступившее осенью 1993 года предложение занять там должность кандидата в штатные профессора. Как и следовало ожидать, Джейми Кейт решил отправиться в Йель вместе с ней. Даудна связалась с руководством университета и помогла договориться о его переводе в качестве магистранта в ее лабораторию. “Ему пришлось пересдать выпускные экзамены, – говорит Даудна, – и, как вы догадываетесь, он справился блестяще”.

Применяя техники переохлаждения, Даудна и Кейт смогли создать кристаллы, которые хорошо отклоняли рентгеновские лучи. Но они столкнулись с известной в кристаллографии “фазовой проблемой”. Детекторы рентгеновского излучения могут точно изменять лишь интенсивность волны, однако не справляются с определением ее фазы. Для решения этой проблемы можно внедрить в несколько зон кристалла по иону металла. Дифракционные рентгенограммы покажут положение внедренных ионов, и на основе этих данных можно будет вычислить остальную структуру молекулы. Так поступали с молекулами белка, но никто не знал, как применить эту технику к РНК.

Кейт решил проблему. Он использовал молекулу под названием гексааммин осмия, которая имеет интересную структуру и вступает во взаимодействие с несколькими точками молекул РНК. В результате рентгеновская дифракция позволила составить карту электронной плотности, которая сообщила информацию о структуре важной складчатой области изучаемой РНК. Ученые принялись составлять такие карты плотности и строить модели потенциальных структур, как Уотсон и Крик делали с ДНК.

Прощание с отцом

Когда осенью 1995 года их работа подходила к кульминации, Даудне позвонил отец. У него обнаружили меланому, которая дала метастазы в мозг. Он сказал дочери, что, по прогнозам врачей, жить ему осталось всего три месяца.

Остаток осени Даудна разрывалась между Нью-Хейвеном и Хило, тратя на каждый перелет более двенадцати часов. Она то сидела у постели отца, то часами говорила по телефону с Кейтом. Каждый день Кейт присылал ей по факсу или по интернету новую карту электронной плотности, и они вместе ее интерпретировали. “Это было невероятное время взлетов и падений и сильнейших перепадов настроения”, – вспоминает она.

К счастью, отец искренне интересовался ее работой, и это несколько облегчало ситуацию. Когда боль отступала, он просил Даудну объяснить, что изображено на последних полученных снимках. Она приходила к нему в комнату, и он, лежа, изучал свежие данные. Не желая обсуждать свое здоровье, он начинал задавать вопросы. “И тогда я вспоминала об его интересе к науке, которым он заразил меня в детстве”, – говорит Даудна.

В ноябре, когда она приехала проведать отца и осталась на День благодарения, из Нью-Хейвена пришла карта электронной плотности, которая оказалась достаточно хороша, чтобы определить структуру молекулы РНК. Даудна видела, как РНК складывается в удивительную трехмерную форму. Они с Кейтом трудились над этим более двух лет, пока многочисленные коллеги утверждали, что их задача невыполнима, но последние данные показывали, что им все же удалось достичь триумфа.

К тому времени отец Даудны уже не вставал с постели и едва двигался. Но разум его был ясен. Даудна вошла к нему и показала цветную распечатку последней карты. На ней была зеленая лента, скрученная чудесным образом. “Похоже на зеленую макаронину”, – пошутил отец. Затем к нему вернулась серьезность. “Что это значит?” – спросил он.

Пытаясь объяснить ему, что изображено на карте, Даудна смогла упорядочить свои мысли о трактовке данных. Они с отцом разглядывали на карте область, где находилось скопление ионов металла, и Даудна строила предположения о том, как РНК складывается вокруг этого кластера. “Возможно, существует металлическое ядро, которое помогает этой РНК сложиться таким образом”, – сказала она.

“Почему это важно?” – спросил отец. Даудна объяснила, что РНК состоит из очень небольшого числа химических веществ, поэтому выполняет сложные задачи благодаря своим разным складкам. Одна из сложностей с РНК состоит в том, что в этой молекуле всего четыре химических компонента, в то время как у белков таких компонентов двадцать. “Поскольку в химическом отношении РНК устроена гораздо проще, – говорит Даудна, – задача состоит в том, чтобы показать, как молекула принимает свою уникальную форму”.

35Mukherjee. The Gene. P. 250.
36Jennifer Doudna. “Hammering Out the Shape of a Ribozyme” // Structure, 15 декабря 1994 г.
37Jennifer Doudna and Thomas Cech. “The Chemical Repertoire of Natural Ribozymes” // Nature, 11 июля 2002 г.
38Интервью автора с Джеком Шостаком и Дженнифер Даудной; Jennifer Doudna. “Towards the Design of an RNA Replicase”. PhD thesis, Harvard University, май 1989 г.
39Интервью автора с Джеком Шостаком и Дженнифер Даудной.
40Jeremy Murray and Jennifer Doudna. “Creative Catalysis” // Trends in Biochemical Sciences, декабрь 2001 г.; Tom Cech. “The RNA Worlds in Context” // Cold Spring Harbor Perspectives in Biology, июль 2012 г.; Francis Crick. “The Origin of the Genetic Code” // Journal of Molecular Biology, 28 декабря 1968 г.; Carl Woese. The Genetic Code (Harper & Row, 1967). P. 186; Walter Gilbert. “The RNA World” // Nature, 20 февраля 1986 г.
41Jack Szostak. “Enzymatic Activity of the Conserved Core of a Group I Self-Splicing Intron” // Nature, 3 июля 1986 г.
42Интервью автора с Ричардом Лифтоном, Дженнифер Даудной и Джеком Шостаком; вручение Дженнифер Даудне премии Грингарда 2 октября 2018 г.; Jennifer Doudna and Jack Szostak. “RNA-Catalysed Synthesis of Complementary-Strand RNA” // Nature, 15 июня 1989 г.; J. Doudna, S. Couture, and J. Szostak. “A Multisubunit Ribozyme That Is a Catalyst of and Template for Complementary Strand RNA Synthesis” // Science, 29 марта 1991 г.; J. Doudna, N. Usman, and J. Szostak. “Ribozyme-Catalyzed Primer Extension by Trinucleotides” // Biochemistry, 2 марта 1993 г.
43Jayaraj Rajagopal, Jennifer Doudna, and Jack Szostak. “Stereochemical Course of Catalysis by the Tetrahymena Ribozyme” // Science, 12 мая 1989 г.; Doudna and Szostak. “RNA-Catalysed Synthesis of Complementary-Strand RNA”; J. Doudna, B. P. Cormack, and J. Szostak. “RNA Structure, Not Sequence, Determines the 5’ Splice-Site Specificity of a Group I Intron” // PNAS, октябрь 1989 г.; J. Doudna and J. Szostak. “Miniribozymes, Small Derivatives of the sunY Intron, Are Catalytically Active” // Molecular and Cell Biology, декабрь 1989 г.
44Интервью автора с Джеком Шостаком.
45Интервью автора с Джеймсом Уотсоном; James Watson et al. “Evolution of Catalytic Function”. Cold Spring Harbor Symposium, vol. 52, 1987.
46Интервью автора с Дженнифер Даудной и Джеймсом Уотсоном; Jennifer Doudna… Jack Szostak, et al. “Genetic Dissection of an RNA Enzyme”. Cold Spring Harbor Symposium, 1987, p. 173.
47Интервью автора с Джеком Шостаком и Дженнифер Даудной.
48Pollack. “Jennifer Doudna”.