Наши развилки. Развилки эволюции природы на пути к человечеству

Text
Leseprobe
Als gelesen kennzeichnen
Wie Sie das Buch nach dem Kauf lesen
Schriftart:Kleiner AaGrößer Aa

Захоронения в недрах осадочного комплекса Земли этих твердых, жидких и газообразных соединений обеспечили изъятие из круговорота достаточно больших объемов углерода, водорода, кислорода, азота и ряда других химических элементов. Природа, как бы специально подготовила запасы энергии для того, чтобы в будущем использовать их в своей эволюции. В углеводородах содержится энергии больше, чем в другом веществе Земли. Необходимо было появиться человеку, который использовал данные горючие полезные ископаемые для своего благополучия, чтобы включить их снова в круговорот химических элементов. Кроме горючих веществ осадочный слой содержит многие другие важнейшие металлические и неметаллические полезные ископаемые (скопления минералов в коре, которые могут быть использованы человечеством для своих нужд). Группа металлических ископаемых включает самородные металлы (золото, платина, серебро и другие); руды черных, цветных, редких, редкоземельных металлов и редкоземельных элементов. К неметаллическим ископаемым относится горнохимическое сырье: различные соли, гипс, барит, сера, фосфориты, апатиты. Кроме того: огнеупорное, электротехническое, пьезооптическое, тепло- и звукоизоляционное, кислото – и щелочноупорное сырье. А также: строительные материалы; драгоценные, поделочные и технические камни.

2.5.2. Гидрожен и Оксижен – в раскаленной мантии Земли

Многие события, вызванные поворотом эволюции Земли на Континентальную развилку, происходили при участии гидов-водородов. Так, после Океанической развилки Гидроженная водяная молекула перемещалась океаническими течениями по первичному океану на протяжении более 100 млн. лет. Уже эволюция планеты прошла через Континентальную развилку, когда в зоне спрединга, в процессе растяжения океанической коры и формирования нового базальтового слоя, Гидрожен вместе с огромными массами океанической коры провалился по глубинным разломам в раскаленные недра Земли. Какая-то часть этой воды пошла на образование особых минералов – серпентинов из раскаленных пород мантии, но Гидроженная молекула воды не попала в эти химические реакции. Гидроженная молекула присоединилась к тем потокам океанической воды, которые взаимодействовали с горячей мантией, обогатились многими химическими элементами, сильно нагрелись, отчего стали легкими. Поэтому эти – уже гидротермальные воды вместе с Гидроженом устремились к местам, где они могли через многокилометровые толщи земной коры проникнуть в верхние слои планеты – на дно океанов. Такими местами были трубообразные минеральные сооружения высотой в несколько десятков метров, напоминающие подводный «Потерянный город», ныне существующий в районе срединно-океанического хребта Атлантического океана. Конечно, в те времена, о которых речь идет в данном разделе, не было Атлантического и других, современных нам, океанов. Однако в том, древнейшем Палеоокеане, несомненно, существовали зоны субдукции, в которых были подводные термальные источники, подобные нынешним, с такими же карбонатными столбами высотой с 18-этажный дом на океаническом дне. Гидроженная молекула гидротермальной воды в восходящем потоке горячих вод проникла в поры (в пустоты коллектора) гидротермальной постройки около 4,1 млрд. л.н., где благодаря удивительной случайности встретила молекулу Карбомалного гликольальдегида. О результатах химической реакции между этими носителями атомных гидов узнаем попозже, когда астероид с Карбомалом прибудет на Землю.

Дрейфующая океаническая плита с кристаллом Оксиженого форстерита после Континентальной развилки, около 4,15 млрд. л.н., столкнулась с Протоафриканской океанической плитой. В этой зоне субдукции часть океанической плиты с Оксиженым форстеритом оказалась поддвинутой под будущую Африканскую плиту и постепенно погрузилась в пекло верхней мантии. Породы перидотитового и базальтового слоев Протоафриканской плиты расплавились. Часть расплава продолжила погружение вплоть до ядра, а другая, с более легкими соединениями, устремилась вверх к поверхности планеты. Хорошо, что температура магмы была немного ниже точки плавления кристалла форстерита с Оксиженом при том высоком давлении, которому был подвергнут этот минерал в месте его нахождения. Поэтому этот кристалл не расплавился, а устремился с базальтовой магмой вверх. Конечно, Оксижен не пропал бы даже в случае расплавления кристалла, но судьба у него была бы не той, которая свершится в случае союза с форстеритом. Дальнейший путь Оксижена показал, насколько определяющими для будущего являются свойства объекта и его попадание в благоприятные условиях.

Расплавленные базальтовые породы с кристаллом Оксиженого форстерита в процессе всплывания к океаническому дну вступили в химическую реакцию с проникшей вниз океанической водой. В результате сформировалась новая магма кислого состава – гранитная, которая проникла на поверхность южной части Протоафриканской океанической плиты. Эта, более легкая кислая магма растеклась гранитным слоем на базальтовой толще, преобразовав эту часть океанической коры в континентальную кору. Постепенно накопилась такая большая масса гранитов, что возник первый остров – материк c Оксиженым форстеритом. С тех пор Оксижену было суждено еще более 500 млн. лет дрейфовать в составе блока континентальной коры, впаянного в океаническую кору Протоафриканской плиты. Движение этого блока продолжалось вокруг земного шара по астеносфере до образования первого суперконтинента Ваальбара 3,6–2,8 млрд. л.н. Затем Оксиженый форстерит участвовал в других интересных приключениях, о которых речь пойдет выше.

Карбомалный, Нитроженный и Ферумный астероидыпосле Континентальной развилки продолжали кружить вокруг Солнца в Поясе астероидов. Их движение происходило по орбитам вокруг Солнца в том же направлении, что и планеты. Пояс астероидов – совокупность множества движущихся объектов разных размеров, как правило, неправильной формы, расположенных на больших расстояниях друг от друга. Поэтому астероидов не сталкивались прежде и сейчас их встречи – маловероятны. Период обращения астероидов вокруг Солнца к рубежу около 4,15 млрд. л.н. изменился приблизительно от 3,5 до 6 лет благодаря увеличению большой полуоси орбиты. Такое вытягивание орбит многих астероидов, включая траектории космических объектов с нашими гидами, происходило благодаря постепенному гравитационному воздействию Юпитера. В результате, к периоду 4,1–3,8 млрд. л.н. орбиты многих астероидов пролегали через внутреннюю область Солнечной системы, где расположена земная группа планет.

Глобальные процессы в глубинных недрах Земли обеспечили не только поворот эволюции литосферы на формирование континентов – на Континентальную развилку, но одновременно направили общую эволюции Земли на образование магнитного поля – на Раннюю геомагнитную развилку. Появление магнитного поля у нашей планеты стало одним из важнейших условий продолжения антропного маршрута эволюции природы по пути к человечеству.

2.6. Ранняя магнитная развилка эволюции Земли. 4,2 миллиарда лет назад

Земля всегда – от момента своего формирования до нынешних дней – находится под постоянной атакой космических излучений всей Галактики, среди которых максимальная доля приходится на потоки энергии от Солнца. Наша звезда распространяет вокруг себя энергию в виде электромагнитного излучения, а также беспрестанно поставляет в космос и на Землю поток частиц – корпускул. Корпускулярное излучение (солнечный ветер) – постоянный поток солнечного материала, распространяющийся далеко за пределы орбиты Плутона. Солнечный ветер содержит многие элементы звездного вещества: нейтрино, электроны (бета-излучение), протоны (ядра водорода), альфа-частицы (альфа-излучение, ядра гелия), а также в малой доле тяжелые атомные ядра.

При этом следует учитывать, что сила солнечного ветра в те времена приблизительно в 100 раз превышала нынешнее излучение. Непрерывное воздействие «стерилизующей» космической радиации, возможно, задержало начало биогенеза на несколько десятков миллионов лет. Солнечный ветер разрушал и постепенно уносил газовую оболочку планеты. Первые атмосферы – Ранняя гелиево-водородная и Вторая углекисло-водяная смогли удержаться у Земли только по 30 млн. лет, с 4,51 млрд. до 4,45 млрд. л.н. Третья водно-азотно-углекислая атмосфера просуществовала значительно дольше – 350 млн. лет (от 4,45 до 4,1 млрд. л.н.), благодаря тому, что в состав атмосферы стали входить более плотные газы, которые надежнее удерживались силой тяжести Земли.

Кроме того, фактором, продлявшим существование третьей и последующих атмосфер, стало появившееся магнитное поле, окружившее Землю около 4,2 млрд. л.н. Конечно, это, Раннее геомагнитное поле не было настольно надежным, каким стало последующее – Позднее геомагнитное поле (см. Поздняя магнитная развилка эволюции Земли – 550 млн. л.н.). Раннее магнитное поле Земли, скорее всего, не очень хорошо защищало атмосферу от уносящего воду мощного потока молодого Солнца потому, что было слабым, напряженностью по разным оценкам от 10 % до 50 % нынешнего. Так, сила магнитного поля на поверхности Земли в то время составляла около 0,6 микротесла (мкТл), а ныне колеблется в среднем от 25 до 65 мкТл. Появление магнитного поля означало следование эволюции Земли через Раннюю магнитную развилку, что обеспечило формирование необходимых, но, конечно, далеко недостаточных условий для формирования сознательных существ. Человечеству повезло, что эволюция нашей планеты прошла через эту развилку. Ведь не все планеты Солнечной системы и тем более Галактики сформировали свои магнитные поля. Даже среди обладавших магнетизмом планет не многие смогли генерировать магнитное поле достаточно продолжительное время, необходимое для изобретения живых существ и их развития до чрезвычайно сложных форм.

 

Возникшее геомагнитное поле заставляло основной поток губительных частиц обтекать Землю и следовать дальше в космос. Та часть солнечного ветра, которой удалось проникнуть к планете, отклонялась геомагнитным полем в сторону южного и северного полюсов. Эти заряженные частицы, перемещаясь к магнитным полюсам по спиралеобразным траекториям, теряют почти всю свою смертоносную энергию. Лишь малая их доля прибывает в нижние слои атмосферы в полярных областях, вызывая полярные сияния. Так что, магнитное поле Земли защищает атмосферу, гидросферу и все живое от губительного воздействия космических частиц, прежде всего от солнечного ветра. Радиационное облучение и бомбардировка высокоэнергетическими частицами всей поверхности планеты во время существования Раннего магнитного поля, как и в последующие периоды ослабления магнитного поля, были более мощными по сравнению с Поздним магнитным полем (см. Поздняя магнитная развилка). То есть, излучения в такие эпохи сильнее воздействовали на все земные оболочки и тем более на живые организмы, если они уже появились.

2.6.1. Магнитное поле – фактор стабильности жизни

Что такое геомагнитное поле и как оно появилось? Упрощено говоря, магнитное поле Земли – это пространство с действующими магнитными силами вокруг внутриземного магнита. Геомагнитное поле распространяется из земных недр в космос, где подвергается воздействию солнечного ветра и космического излучения. Раннее магнитное поле генерировалось электрическими токами, которые вызывались турбулентной конвекцией в верхней, жидкой части мантии, покрывавшей уже отвердевшую нижнюю часть мантии. В тот период жидкая часть мантии была достаточно электропроводна, чтобы поддерживать образование магнитного поля. Кроме того, жидкая часть мантии отличалась пониженными значениями температуры и давления по сравнению с аналогичными параметрами в нижней твердой мантии, что обеспечивало успешную реализацию электромагнитного процесса. Такой естественный механизм образования магнитного поля называют геодинамо. Можно сказать, что Ранее магнитное поле во многом обязано своим происхождением благоприятному сочетанию объема, состава и структуры мантии тех времен.

Земное ядро тогда было очень горячим и еще полностью жидким. Гораздо позже – около 550 млн. л.н. – после кристаллизации внутреннего ядра возникло Позднее магнитное поле, которое стало генерироваться во внешнем, расплавленном, металлическом, электропроводящем ядре благодаря его взаимодействию с внутренним твердым ядром. В этом случае главным источником энергии является тепло, исходящее от внутреннего ядра. Циркуляция тепла обеспечивает постоянное перемешивание металлического расплава внешнего ядра. Происходит теплообмен, возникают конвективные потоки и, как следствие, электричество. Но сейчас вернемся к Ранней магнитной развилке.

Структура Раннего магнитного поля в чем-то отличалась от современного магнитного поля, но об этом имеется очень мало фактических сведений. Поэтому ознакомимся со строением современного геомагнитного поля, которое включает три составляющие части: главное поле, поля мировых аномалий и внешнее магнитное поле. Главное поле имеет своим источником внешнее жидкое ядро Земли (а до этого источником была внешняя жидкая оболочка мантии) и вблизи поверхности представляет собой полосовой магнит с осью, направленной приблизительно с севера на юг. Центр этого магнитного диполя смещен относительно центра Земли, а ось наклонена к оси вращения планеты на угол около 10°. Поля мировых аномалий созданы мощными массами намагниченных горных пород, расположенных в земной коре, вблизи поверхности. В качестве примера магнитной аномалии уместно привести Курскую магнитную аномалию, сформированную под воздействием огромных запасов железных руд. Параметры этих локальных полей – магнитных аномалий сильно отличаются от значений в смежных районах. С точки зрения защиты Земли от космических частиц нас интересует, прежде всего, внешнее магнитное поле – магнитосфера. Нижняя граница магнитосферы расположена в верхней части атмосферы (100 км и выше), где молекулы воздуха ионизированы и образуют плотную холодную плазму, которая удерживается магнитным полем Земли. Магнитосфера имеет сложную форму: в направлении Солнца распространяется на расстояние в среднем до 10 земных радиусов (радиус Земли составляет 6371 км), а с ночной стороны формируется магнитный шлейф длиной две сотни земных радиусов. Средняя скорость солнечного ветра (протонов, электронов и др.) в районе земной орбиты – огромная, около 400 километров в секунду, плотность потока – довольно высокая, несколько десятков частиц в 1 см3. Магнитосфера Земли играет роль особого экрана (щита), защищающего планету от разрушающего влияния солнечного ветра и космических излучений. Частицы солнечного ветра и космические излучения, отклоненные геомагнитным полем, концентрируются в радиационных поясах Земли (поясах Ван Аллена).

Земля теряла гораздо меньше своего газообразного и жидкого вещества по сравнению с теми объектами Солнечной системы, у которых отсутствует магнитное поле[41]. Раннее магнитное поле, пронизывая литосферу, гидросферу и атмосферу, оказывало влияние на климат и погоду, создало условия, благоприятные для зарождения жизни, а также для развития живых организмов на первых этапах биотической истории Земли. Вспомним также о воздействии характеристик магнитного поля на такие важные факторы эволюции живых организмов, как наследственность и изменчивость. Посредником влияния магнитного напряжения на организм выступают молекулы воды. Магнитное поле вмешивается в ход физико-химических и биологических процессов организма через жидкокристаллические структуры воды в белках и других соединениях. Квант энергии магнитных полей изменяет метаболические процессы[42] в клетке и проницаемость мембран. Нынешний облик Земли был бы совсем иным, если бы в её эволюции не случились геомагнитные Ранняя (4,2 млрд. л.н.) и затем Поздняя (550 млн. л.н.) развилки.

Поворот эволюции Земли на Ранней магнитной развилке завершил подготовку планеты к образованию живых существ из неживой материи. Земля по мере своей эволюции приобретала к отметке около 4,1 млрд. л.н. те характеристики и условия, которые были необходимы для зарождения жизни и для её эволюционного усложнения.

3. БИОТИЧЕСКИЙ ЭТАП ЭВОЛЮЦИИ ЗЕМЛИ НА ПУТИ К ЧЕЛОВЕЧЕСТВУ

До рубежа около 4,1 миллиарда л.н. эволюция Вселенной по маршруту к человечеству происходила в неживой природе, не проявляя каким—то явным образом свой потенциал создания форм материи, способных осознать свое существование, исследовать окружающее пространство, тем самым активно сопротивляться вселенскому законы энтропии, т. е. тенденции разрушения любых объектов. Тем не менее, ретроспективный взгляд на ход развития природы через выше рассмотренные эволюционные развилки позволяет наблюдать нарастающее усложнение форм неживой природы со временем. Химическая эволюция вещества во Вселенной от водорода до урана и до образования огромнейшего числа их соединений привела к появлению нового направления развития природных форм, которое называем биотическим. Существует много разных гипотез о возникновении живых организмов. Автор данных строк придерживается мнения тех ученых, которые доказывают абиогенное происхождение жизни, т. е. спонтанное превращение неживого вещества в живой организм. Такой процесс обозначается, словом абиогенез.

В тот момент, когда на Земле возник первый живой организм, эволюция природы совершила принципиальный, качественный скачок от геологического развития к биотической эволюции. Среди неживых объектов появились существа, которые стали интенсивно размножаться и успешно адаптироваться к окружающей среде. Тем самым повысилась вероятность появления людей, но первым живым организмам до этого события предстояло эволюционировать еще более 4 млрд. лет по антропному маршруту в границах Биотического этапа развития планеты. А что считать первым живым организмом, с которого начался Биотический этап эволюции Земли? Для этого следует сформулировать понятие жизни. В качестве наиболее общей формулы живого существа подходит определение Американского космического агентства НАСА, которое занимается помимо всего космического прочего, также вопросами поисков внеземной жизни. НАСА определяет жизнь как химическую систему, способную к дарвиновской эволюции. Речь идет о том, что комплекс молекул становится живым организмом, если он способен к наследуемости (созданию копий, репликации, размножению), обладает изменчивостью (копии в чем-то отличаются от родителей, имеют генетические мутации, которые передаются по наследству) и подвержен отбору (копии с разными изменениями имеют различную вероятность последующего копирования). Наверное, следует добавить к этому определению такое необходимое свойство для жизни, как способность получать и перерабатывать энергию, необходимую для выполнения всей этой работы.

Приведем еще одно определение (Толкачёва В.Ф.): «Жизнь – это часть процессов бытия объектов Вселенной, являющаяся симметричной реакцией на другую часть процессов во Вселенной, идущих с повышением энтропии. Жизнь характеризуется самосохранением и саморазмножением живых объектов путём самосовершенствования их структур в направлении повышения их устойчивости за счёт организации взаимодействия с другими объектами при их движении сквозь свою среду и относительно них с использованием собственной информации об уже совершившихся актах бытия…».

Первое определение характеризует саму жизнь, второе заслуживает внимание в основном потому, что указывает на важное свойство жизни – активно сопротивляться одной из главных сил во Вселенной – энтропии (упрощению говоря, беспорядку). Жизнь стремится создавать все более сложные системы, которые могли бы приспосабливаться к меняющимся внешним условиям, продляя тем самым время своего существования. Каждый живой индивидуальный организм существует недолго и распадается на исходные простейшие составные части – химические элементы. Однако общая система всех живых существ – жизнь – действует и эволюционирует в направлении бессмертия, т. е. сохранения сложных форм материи. Конечно, успехи жизни в борьбе с энтропией всегда являются привязанными к какому-то, скорее всего, локальному участку той или и иной галактики, и к определенному временному отрезку истории этого участка. Так что маловероятно, чтобы эволюция живой природы повлияла на эволюцию какой-то звездно-планетной системы, тем более целой галактики.

Все живые организмы на Земле выполняют перечисленные задачи с помощью трех классов сложных органических соединений: дезоксирибонуклеиновых кислот (ДНК), рибонуклеиновых кислот (РНК) и белков. Биологическая роль ДНК заключается в хранении и воспроизведении генетической (наследственной) информации. РНК обеспечивает считывание этой информации и осуществляет синтез белков в соответствии с записанными в молекуле ДНК «инструкциями». В процессе строительства белков РНК выступает посредником между ДНК и белками. Белки – необходимый компонент каждой клетки организма, важная часть костей, мышц, хрящей, кожи и крови. Белки выполняют в организме разнообразные функции: транспортную, защитную, структурную, двигательную, рецепторную и другие.

Человечество на протяжении всего своего существования задавалось вопросом о происхождении жизни, на который пока не получено однозначного ответа. Скорее всего, люди никогда не узнают точно, череда каких событий и химических реакций создала сложнейшее соединение, способное к дарвиновской эволюции. К сожалению, даже, если в лабораторных условиях удастся создать живой организм, то и тогда это не станет доказательством именно такого происхождения жизни на Земле. Может быть, поэтому существует так много гипотез и даже ненаучных представлений на этот счет. Тем не менее, ученые не прекращают изучение происхождения жизни, и многие идеи уже нашли подтверждение в результате новых, передовых исследований. В данном обзоре приводится схематическое отражение наиболее научно обоснованной и разделяемой большинством специалистов версии появления и эволюции живых существ. Эволюция планеты на Биотическом этапе развития началась с Предклеточной или, по-другому называя, Допрокариотной развилки.

 

Эволюции Земли подошла к повороту на Предклеточной развилке, завершив подготовку всех условий для синтеза сложнейших химических соединений, способных продлять свое существование путем самокопирования, размножения. Еще раз отметим важную роль в эволюции Земли тектоники плит, которая наряду с другими процессами обеспечила обмен вещества между мантией, литосферой, гидросферой и атмосферой. Постепенно обновлялся химический состав атмосферы и верхних слоев земной коры. На поверхности и в интервалах разных глубин появлялись новые горные породы и минералы. К моменту образования первых живых организмов в распоряжении природы находилось более 1500 разных минералов в виде твердых и расплавленных веществ, а также множество химических соединений в водорастворенном и газовом состоянии. Планета подобно огромному миксеру непрерывно перемешивала своё вещество, что приводило к возникновению все новых и новых вариантов взаимодействия химических элементов в самых разных физико-химических условиях. У этих объектов неживой природы уже были заложены зачатки тех свойств, которые превратятся у живых организмов в необходимые факторы, определяющие жизнь – наследственность и изменчивость. Базовым свойством наследственности является постоянство, а в основе эволюции лежит изменчивость. Минералы и иные не биотические соединения не имеют генов, но, тем не менее, обладают этими двумя важнейшими качествами: постоянством структуры и способностью изменять её, образуя многочисленные формы. Например, кальцит (CaCO3) имеет постоянную гексагональную кристаллическую решетку, но образует более 2000 комбинаций кристаллографических модификаций. Еще пример, все кристаллы снега (воды) сохраняют гексагональную структуру, но при этом формируют тысячи различных комбинаций ветвящихся структур. Способности минералов кристаллизоваться в разнообразные формы и наращивать размеры кристаллов эволюционировали в умение определенных обособленных химических соединений создавать свои копии. Естественный отбор также не является уникальным изобретением организмов. Так, в течение более 400 миллионов лет после образования Земли возникали удивительные по форме и свойствам минеральные соединения с разными способностями противостоять процессам разрушения. Естественным образом происходил отбор самых стойких химических образований, которые выделялись способностью длительно не разрушаться, увеличивать свой размер за счет наращивания граней кристалла или путем формирования минеральных агрегатов (друз) в виде сросшихся между собой кристаллов. Так, что основные свойства живых существ сформировались на основе базовых качеств химических форм неживой природы. Эволюционное преобразование неживой природы в первые живые организмы стало возможным благодаря движению земного вещества, что и обеспечивала, главным образом, тектоника плит.

Биотический этап эволюции природы являлся самым продолжительным и очень сложным периодом истории Земли. В течение более 4 млрд. лет череда многочисленных закономерных и случайных событий в неживой и живой природе прокладывала извилистый эволюционный путь к Человечеству. Начало Биотического эволюционного этапа совпало по времени с такими глобальными событиями, как: вступление планеты в третий тепловой этап, появление четвертой атмосферы и тяжелая астероидно-кометно-метеоритная бомбардировка. Эта часть антропного маршрута прошла через множество эволюционных перекрестков, из которых выбрано 38 важнейших развилок. Каждой из этих развилок посвящен отдельный раздел.

41Магнитное поле отсутствует у Марса и Венеры. У Меркурия магнитное поле составляет только около 1 % от поля Земли.
42Метаболизм или обмен веществ – совокупность сложных химических реакций в организме для поддержания жизни, которые обеспечивают рост и размножение организма, превращание калории пищи в энергию, необходимую живому организму для жизнедеятельности.