О происхождении времени. Последняя теория Стивена Хокинга

Text
7
Kritiken
Leseprobe
Als gelesen kennzeichnen
Wie Sie das Buch nach dem Kauf lesen
Schriftart:Kleiner AaGrößer Aa

В ньютоновском мире отделенных друг от друга и абсолютных времени и пространства – и без космического предела скорости – все пространство считалось, по крайней мере в принципе, мгновенно достижимым для посылаемого сигнала. В релятивистском мире Эйнштейна мы начинаем понимать, какая малая часть его находится в пределах досягаемости. Наблюдаемая часть Вселенной ограничена как в пространстве, так и во времени областью, лежащей внутри нашего светового конуса прошлого. А так как с момента Большого взрыва прошло всего 13,8 миллиарда лет, это значит, что существует космологический горизонт, предельное расстояние, вне которого все, что происходит во Вселенной – или мультивселенной, – в принципе находится вне нашей досягаемости, как бы мы ни пытались увеличить силу наших телескопов.

Даже внутри нашего космологического горизонта мы можем собирать информацию лишь об ограниченных участках пространства-времени. На рис. 9 показаны те области внутри светового конуса прошлого, которые находятся в прямой досягаемости земного наблюдателя. Во-первых, астрономические наблюдения света от источников во Вселенной дают нам информацию о приповерхностной области светового конуса, тянущегося в прошлое более чем на 13 миллиардов лет. Во-вторых, наблюдения земных окаменелостей, космических лучей и других фрагментов космического вещества позволяют нам заглянуть в локальную внутренность нашего светового конуса прошлого на глубину примерно в 4,6 миллиарда лет. Но между этими двумя областями лежат огромные зоны (на рис. 9 они заштрихованы редко), прямого доступа к которым у нас нет.

Рис. 9. Наш световой конус прошлого. Густо заштрихованы области в прошлом, к которым у нас есть прямой доступ.

• • •

В 1907 году Эйнштейн решил переосмыслить ньютоновский закон всемирного тяготения, чтобы привести описание гравитации в соответствие со своим новым релятивистским видением пространства-времени. Это грандиозное по трудности предприятие вылилось в настоящую математическую одиссею. Впоследствии сам Эйнштейн описывал его так: «…долгие и одинокие странствия по пустыне, во тьме, в поисках истины, которую мы чувствуем, но не можем выразить»[33]. Но все оправдалось. В ноябре 1915 года, в мрачные дни Первой мировой войны, Эйнштейн смог наконец опубликовать свою общую теорию относительности, новую теорию тяготения, совместимую со специальной теорией относительности – теорией пространства-времени. Ей суждено было стать самым грандиозным из научных достижений Эйнштейна.

В общей теории относительности гравитация описывается в терминах геометрии – по сути, геометрии самого пространства-времени[34]. Эта теория рассматривает тяготение как проявление кривизны пространства-времени, ткань которого изгибается под воздействием массы и энергии. Согласно этой теории, например, Земля движется вокруг Солнца не потому, что на нее на огромном расстоянии действует таинственная сила, каким-то образом притягивающая ее к Солнцу, а потому, что масса Солнца слегка изменяет форму пространства вокруг него, создавая в его окрестности что-то вроде углубления, – из-за чего Земля (и другие планеты) и движутся в этой долине по эллиптическим орбитам. Мы не можем увидеть этого углубления, но мы его чувствуем – это тяготение! Или другой пример – согласно Эйнштейну, вы стоите, упираясь ногами в землю, потому что масса планеты создает в окружающем ее пространстве что-то вроде вмятины, по стенкам которой ваше тело как бы соскальзывает вниз, что и заставляет ваши подошвы чувствовать направленное вверх давление почвы. Та же складка в ткани пространства удерживает на орбите вокруг нашей планеты искусственные спутники, МКС и Луну.

Искривляется не только пространство, но и время! Это явление эксплуатируют – нещадно при этом преувеличивая – постановщики таких фильмов, как «Интерстеллар». Когда Джозеф Купер и его экипаж возвращаются на борт своего космического корабля после короткого пребывания на планете Миллера, они обнаруживают, что Ромилли, член экипажа, дожидавшийся их на корабле, постарел больше, чем на двадцать три года. По-видимому, огромная масса черной дыры неподалеку от планеты Миллера замедлила ход времени для посетивших планету астронавтов.

Мощь эйнштейновской общей теории относительности воплощена в диалоге между веществом и энергией с одной стороны и формой пространства-времени с другой, и этот диалог имеет форму уравнения:



Прочесть это уравнение нетрудно. В правой части – все вещество и энергия в некоторой области пространства-времени, обозначенные Tµv. В левой – описание геометрии этой области. Магия содержится в знаке равенства (=) посредине: он с математической точностью показывает, как геометрия пространства-времени слева (Gµv) связана с данной конфигурацией вещества и энергии (Tµv) справа. Эта взаимосвязь, как говорит нам теория Эйнштейна, и есть то, что мы воспринимаем как тяготение. Получается, что тяготение не входит в теорию Эйнштейна как независимая сила, а возникает из взаимозависимости между материей и формой пространства-времени. Как выразился американский физик Джон Арчибальд Уилер, «вещество говорит пространству-времени, как ему искривляться; пространство-время говорит веществу, как ему двигаться»[35].

Короче, общая теория относительности вдохнула жизнь в пространство-время. Теория Эйнштейна преобразовала пространство-время: из ньютоновской вечной и неизменной «космической сцены», устройство которой недоступно нашему пониманию, оно превратилось в гибкое физическое поле. Интересно, что в физике понятие полей – невидимых субстанций, заполняющих пространство, – восходит к блестящему шотландскому экспериментатору XIX столетия Майклу Фарадею. Эту концепцию тут же подхватил Максвелл, чтобы сформулировать свою теорию электромагнетизма. Наверное, самый известный пример физического поля – это, конечно, магнитное поле, посредством которого действуют магниты. Сегодня физики пользуются понятием поля для описания не только сил, но и разновидностей частиц. Грубо говоря, мы представляем себе частицы как плотные комки или крупицы соответствующих полей, заполняющих пространство. Гений Эйнштейна сказался в том, что он идентифицировал само пространство-время как физическое поле тяготения.

Общая теория относительности сразу же встретила поддержку, которая стала быстро расти. Первое доказательство ее истинности было найдено в Солнечной системе – оно было связано с орбитой планеты Меркурий. Когда в середине XIX века Леверье указал астрономам положение планеты Нептун, он также подметил, что околосолнечная орбита Меркурия чуть отклоняется от пути, который ей предписывает ньютоновский закон всемирного тяготения. Леверье, что неудивительно, предположил, что траектория Меркурия может испытывать влияние другой планеты, находящейся еще ближе к Солнцу. Имя Вулкан таинственной планете дал французский физик Жак Бабинэ. Но Вулкан так и не удалось найти. Поэтому в 1915 году Эйнштейн решил перевычислить орбиту Меркурия на основании своей новой теории тяготения – и увидел, что теория полностью объясняет «аномалию Меркурия». Это открытие он называл самым сильным эмоциональным переживанием своей жизни – «будто со мной заговорила сама Природа»[36].

 

Но настоящий триумф общей теории относительности пришел в 1919 году, когда британский астроном сэр Артур Эддингтон отплыл к португальскому острову Принсипи, расположенному у побережья Западной Африки, чтобы измерить положения звезд во время полного солнечного затмения. Если Эйнштейн был прав и масса действительно искривляет пространство-время, то свет звезд, проходя мимо такого массивного объекта, как Солнце, должен не распространяться по прямой, а отклоняться от нее, что вызвало бы небольшое смещение положения этих звезд на небе. Именно это и увидели пораженные Эддингтон и его сотрудники: звезды сдвинулись со своих мест. Газета The New York Times сообщила о наблюдениях Эддингтона под сенсационным заголовком Lights all askew in the heavens, men of science more or less agog («Огни небес перекосились, научный мир в возбуждении»); Эйнштейн стал мировой знаменитостью – гений, потеснивший с трона самого Ньютона[37]. Законы Ньютона, считавшиеся истиной в последней инстанции, оказались временными и приблизительными. А то, что британский астроном подтвердил теорию немецкого физика, было воспринято и как акт примирения между странами, только что воевавшими друг против друга во время Первой мировой войны.

Световой луч искривляется в поле тяготения Солнца очень слабо – на пару угловых секунд, – потому что по астрономическим меркам гравитационное поле Солнца не очень сильное. Но почти ровно через сто лет, весной 2019 года, первые страницы всех новостных изданий мира украсило запоминающееся изображение, похожее на улыбающееся лицо: фиксация искривления света в его самой крайней форме. Современная версия экспедиции Эддингтона выглядела так: международный коллектив астрономов создал виртуальный телескоп размером с весь земной шар – «телескоп горизонта событий», состоявший из восьми разбросанных по всему миру, от Гренландии до Антарктиды, огромных радиоантенн в форме «тарелок». При их совместной работе достигалось пространственное разрешение, при котором теоретически можно было бы разглядеть теннисный мяч на поверхности Луны. Когда астрономы направили свой глобальный «телескоп горизонта событий» в самый центр Мессье 87 – большой галактики в скоплении Девы на расстоянии около 55 миллионов световых лет от нас – и реализовали всю его разрешающую силу, а затем численно свели воедино все полученные пиксельные изображения, на экранах их компьютеров появился черный диск, окруженный кольцом света. Это было изображение тени гигантской черной дыры, поглощающей окружающее вещество. Темный диск, который мы видим на рис. 10, свидетельствует о том, что в центральной области галактики пространство-время скручивается с чудовищной силой: световые лучи, блуждающие там, не просто отклоняются, но остаются внутри области, как в западне. Кольцо света, окружающее область, порождается нагретым веществом – газом, исчезающим в черной дыре. При этом дыра эта вращается таким образом, что свет, доходящий до нас из-под нижней части черного диска, получает импульс энергии, отчего нижняя часть светового ореола делается ярче. При массе в 6,5 миллиарда Солнц, сжатой внутри области размером примерно с Солнечную систему, эта черная дыра – одна из самых тяжелых в нашей области космоса.

Общая теория относительности предсказала, что черные дыры должны существовать. Всего через несколько месяцев после эпохальной публикации Эйнштейна немецкий астроном Карл Шварцшильд нашел первое решение основных уравнений Эйнштейна, описывавших сильно искривленную геометрию пространства вокруг исключительно плотной идеально сферической массы M. Так как в то время шла Первая мировая война и Шварцшильд находился на Русском фронте, он записал свое решение на почтовой открытке и послал ее в Берлин Эйнштейну. Тот, естественно, пришел в восторг и с энтузиазмом представил полученный результат на заседании Прусской Академии наук.


Рис. 10. Это первое изображение черной дыры, полученное в 2019 году «Телескопом горизонта событий», потрясло мир. Размер центральной «тени» не больше размера Солнечной системы, но в нем заключена масса примерно 6,5 миллиарда Солнц. Объект расположен в центре ядра галактики Мессье 87, на расстоянии около 55 миллионов световых лет. Световое гало образовано излучением вещества, падающего в черную дыру, а тень обозначает границы области пространства, где его кривизна настолько велика, что весь излучаемый свет втягивается внутрь.


Геометрическое решение Шварцшильда описывало весьма необычную поверхность, расположенную на расстоянии 2GM/c2 от центра масс[38]. Оказалось, что на этой поверхности пространство и время меняются ролями. Много лет эта ситуация оставалась очень запутанной. Эйнштейну казалось, что это просто математическая странность предложенного решения, не имеющая никакого физического значения. Сам Шварцшильд думал, что на этой поверхности пространство и время каким-то образом заканчиваются.

Но в 1930-х годах[39] туман, окружавший геометрию поверхности Шварцшильда, начал рассеиваться. Стало понятно, что его решение описывает конечную форму пространства-времени после завершения гравитационного коллапса идеально сферической массивной звезды, когда она истощает свои запасы ядерного горючего и умирает[40]. Конечно, реальные звезды не идеально сферические, и поэтому большинство физиков оставались скептиками в вопросе о том, существуют ли «гравитационно сколлапсировавшие звезды» на самом деле. Только после вдохновленного работой Роджера Пенроуза ренессанса общей теории относительности в 1960-х физическая реальность таких звезд наконец начала осознаваться, и Уилер пустил для них в оборот термин «черные дыры».

Пенроуз, чистый математик, работавший в Бэркбекском колледже в Лондоне, разработал целый ряд новых остроумных методов описания сложных геометрических структур в общей теории относительности и доказал, что все достаточно массивные звезды, какими бы ни были их исходная форма или химический состав, коллапсируют в черные дыры в конце своей жизни. Это означало, что черные дыры не были эксцентричным математическим артефактом, а должны были составлять неотъемлемую часть космической экосистемы. В своей статье 1969 года Пенроуз писал: «Я только хотел бы призвать к тому, чтобы к черным дырам относились серьезно и исследовали бы во всех подробностях последствия их существования. Ибо кто решится заявить, что они не могут играть какую-то важную роль в картине наблюдаемых явлений?»[41] Это замечание оказалось пророческим. В течение нескольких последовавших десятилетий астрономические наблюдения давали все новые и новые свидетельства существования черных дыр. Кульминацией находок и стали первые неясные изображения этих загадочных объектов, полученные в 2019 году. И спустя пятьдесят пять лет после сделанного Пенроузом математического предсказания повсеместного распространения черных дыр во Вселенной за свое изначально чисто теоретическое открытие в 2020 году он был удостоен Нобелевской премии по физике.

Опубликованная в 1965 году статья Пенроуза[42], которая в итоге принесла ему Нобелевскую премию, занимает всего три страницы и почти не содержит уравнений, но в ней помещен захватывающий, как рисунки да Винчи, набросок – схема гравитационного коллапса звезды в черную дыру (см. рис. 11). На пространственно-временной диаграмме Пенроуза показаны два пространственных измерения и дана схема их переплетения с измерением временным. Мы видим, что вдали от объекта световые конусы будущего открыты в обе стороны, а это означает, что пучки света могут быть направлены как к звезде, так и от нее – как мы и ожидаем. Вблизи коллапсирующей звезды, по мере развития коллапса, появляется особая поверхность, на которой конусы изгибаются так сильно, что даже световые лучи, направленные вовне, двигаясь со скоростью света, «зависают» на постоянном расстоянии от центра звезды. И так как ничто не может двигаться быстрее света, ничто не может каким-либо способом преодолеть это гравитационное притяжение.

Коллапсирующая звезда создала вокруг себя область пространства-времени, полностью изолированную от остальной Вселенной, – черную дыру.

Поверхность, отделяющая «безвыходную» зону внутри черной дыры от остальной Вселенной, и есть та необычная поверхность в геометрии Шварцшильда, которая вызвала такое замешательство в первые годы после появления общей теории относительности. Сегодня ее называют горизонтом событий черной дыры. Она приблизительно соответствует кромке черного диска на рис. 10. Поверхность горизонта событий действует как пропускающая в одну сторону мембрана, сквозь которую могут входить вещество, свет и информация, но выйти обратно не может ничего. Черная дыра – кошмарная форма клаустрофобии.

 

Рис. 2. Сделанный Роджером Пенроузом в 1965 году рисунок, иллюстрирующий коллапс звезды с образованием черной дыры. Когда звезда сжимается, в пустом пространстве вокруг нее возникает любопытная поверхность, отмеченная черным кольцом в центре рисунка. С этой поверхности даже свет не может покинуть звезду. На чисто математических основаниях Пенроуз продемонстрировал, что, независимо от ее формы, появление такой ловушки для света является признаком неизбежного образования черной дыры с сингулярностью в центре, окруженной цилиндрическим горизонтом событий. Внутри же черной дыры крайне сильный наклон световых конусов будущего означает, что движение к сингулярности должно продолжаться. Из-за этого наклона, однако, внешний наблюдатель не увидит даже последних стадий коллапса, не говоря уж о самой сингулярности внутри черной дыры.


Мало кто из физиков считает, что на горизонте событий большой черной дыры вообще возможно что-либо увидеть или почувствовать, но само его существование имеет огромное значение для причинной структуры черных дыр. Дело в том, что под горизонтом событий пространство и время в некотором смысле меняются ролями. Если отважный астронавт все же каким-то образом проникнет внутрь горизонта событий черной дыры, неуклонно растущий наклон световых конусов будет означать, что ему неизбежно придется продолжать двигаться по направлению к ее центру. То есть радиальное измерение пространства внутри горизонта приобретает свойства временного измерения – это движение в одном направлении, движение, которое невозможно остановить или обратить вспять, и остается только двигаться вперед. Пространственно-временная сингулярность бесконечной кривизны, которая поджидает нашего астронавта в центре дыры, по сути не является точкой в пространстве, но скорее моментом времени – последним моментом.

ПОВЕРХНОСТЬ ГОРИЗОНТА СОБЫТИЙ ДЕЙСТВУЕТ КАК ПРОПУСКАЮЩАЯ В ОДНУ СТОРОНУ МЕМБРАНА, СКВОЗЬ КОТОРУЮ МОГУТ ВХОДИТЬ ВЕЩЕСТВО, СВЕТ И ИНФОРМАЦИЯ, НО ВЫЙТИ ОБРАТНО НЕ МОЖЕТ НИЧЕГО. ЧЕРНАЯ ДЫРА – КОШМАРНАЯ ФОРМА КЛАУСТРОФОБИИ.

Сингулярность с ее бесконечным скручиванием – это там, где (или когда) уравнение Эйнштейна теряет свою предсказательную силу. В пространственно-временных сингулярностях общая теория относительности работать отказывается. И это озадачивает. Как мог Пенроуз доказать, что гравитационный коллапс массивной звезды приводит к образованию сингулярности, если теоретическая база, на которую он опирался, несовместима с сингулярностью? Оригинальность стратегии Пенроуза проявилась в том, чтобы идентифицировать точку невозврата в гравитационном коллапсе, образование того, что он назвал «ловушечной поверхностью» – которую даже свет звезды не может покинуть. Пенроуз показал, что, как только образуется ловушечная поверхность, дальнейший коллапс в сингулярность неизбежен. Его математические приемы были так искусны, что с их помощью он сумел предсказать исход коллапса, несмотря на то что проследить его развитие вплоть до завершения в реальной звезде оказалось невозможно.

Что же происходит, когда две черные дыры входят в сферы влияния друг друга и начинают вращаться друг вокруг друга? Общая теория относительности предсказывает, что их взаимодействие будет генерировать гравитационные волны – волнообразные возмущения пространства-времени, которые распространяются по Вселенной со скоростью света. Так работают уравнения Эйнштейна: две черные дыры, обращающиеся друг вокруг друга, образуют периодически изменяющуюся конфигурацию масс, на что, как следует из уравнений, пространство-время откликается своими собственными периодическими возмущениями. Эта рябь пространства-времени и есть гравитационные волны.

Геометрическая рябь гравитационных волн уносит огромное количество энергии. Отток энергии из системы обращающихся друг вокруг друга черных дыр приводит к тому, что они по спирали сближаются друг с другом и в конце концов сливаются, образуя черную дыру большего размера. По энергии, которая при этом выделяется, слияния черных дыр оставляют далеко позади все остальные взрывные события во Вселенной. Одно столкновение двух черных дыр может вызвать всплеск гравитационных волн более мощный, чем общая мощность всего света, излучаемого всеми звездами во всей наблюдаемой Вселенной. И тем не менее размер геометрических волн, возбуждаемых такими столкновениями, крайне мал, потому что ткань пространства-времени чрезвычайно жесткая[43]. Вот почему, несмотря на их невероятную мощь, всплески гравитационных волн очень трудно регистрировать.

Более того, так как гравитационные волны не несут никаких частиц, их всплеск, проходя через нашу планету, остается невидимым и неощутимым – если не считать того, что, прежде чем он бесследно уйдет дальше в космос, все измерительные линейки на Земле на протяжении очень короткого времени на микроскопическую величину растянутся и сократятся, а часы чуть ускорятся и снова замедлятся. Чтобы зарегистрировать эти изменения, понадобятся линейки длиной в несколько миль, способные измерять изменения расстояния с точностью, значительно более высокой, чем размер протона. Это кажется невозможным. Однако, совершив настоящее инженерное чудо, две группы ученых, коллаборации LIGO в Соединенных Штатах и VIRGO в Европе, сделали это. Используя лазеры и сложнейшую технику для контроля длины трех пар вакуумных трубок длиной в несколько миль каждая, образующих L-образные конфигурации в трех далеко отстоящих друг от друга местах на поверхности Земли, обе группы устроили хитроумные ловушки для гравитационных волн, проходящих через нашу планету. И вот 14 сентября 2015 года, после нескольких лет ожидания и вслушивания, L-образные ветви установки LIGO вдруг начали вибрировать, сначала невероятно слабо, но постепенно быстрее и сильнее. Спустя долю секунды вибрации угасли, но, пользуясь эйнштейновской теорией, по этой мгновенно исчезнувшей вибрационной картине физики сумели восстановить и отследить всплеск гравитационных волн, порожденный случившимся более миллиарда лет назад спиральным сближением и слиянием пары черных дыр, каждая массой около тридцати Солнц. Спустя пять лет таких гравитационно-волновых всплесков было зарегистрировано уже около сотни. Оказалось, что черные дыры действительно представляют собой неотъемлемую часть космической экосистемы – в точности, как и предсказывал Пенроуз.

Экспериментальное открытие гравитационных волн подтвердило последнее из великих предсказаний общей теории относительности. Во многих отношениях это событие отмечает вступление теории в пору зрелости – им ознаменовано как завершение одной эры, так и начало другой. Начавшись с абстрактных математических уравнений, описывающих пространство, время и тяготение, с открытием гравитационных волн эта теория превратилась в совершенно новый способ видения Вселенной. Больше чем через четыреста лет после того, как Галилей впервые направил телескоп на звезды, у астрономов как будто появился новый орган чувств, который позволяет им видеть темную сторону Вселенной, – в ней доминируют черные дыры, темная материя и темная энергия. Работающие теперь в разных точках Земли гравитационно-волновые обсерватории исследуют космос, улавливая мельчайшие вибрации геометрии самого пространства-времени – поля, которое Эйнштейн впервые описал более столетия назад.

Еще на заре эры общей относительности Эйнштейн быстро понял, что его теория может дать радикально новое видение космоса как целого. В 1917 году он писал известному голландскому астроному из Лейдена Виллему де Ситтеру: «Я хочу решить вопрос о том, можно ли развить основную идею относительности до ее окончательного вывода и определить форму Вселенной как целого»[44].

Эйнштейн предложил считать глобальную форму пространства чем-то вроде трехмерной версии поверхности сферы – так называемой гиперсферой. Вообразить гиперсферу трудно – мы ведь обычно думаем об искривленных пространствах как о двумерных поверхностях, погруженных в обычное трехмерное Евклидово пространство. Но такое погружение поверхности в пространство с большим числом измерений – всего лишь уступка нашему зрительному опыту. Математики XIX века уже показали к тому времени, что все геометрические свойства искривленной поверхности – вроде прямых линий, углов и тому подобного – могут быть определены в пределах этой поверхности, без обращения к чему-то, что находится выше или ниже нее[45]. Подобным же образом описание искривленной формы трехмерной гиперсферы не нуждается ни в какой внешней опорной точке. Гиперсфера – это просто гиперсфера.

Как и у поверхности сферы, у трехмерной гиперсферы нет ни центра, ни границы. В какой бы точке гиперсферы вы ни находились, пространство выглядит одинаково. Однако общий объем пространства в эйнштейновской вселенной конечен. Это значит, что так же, как конечна поверхность Земли, ограниченно и количество различных мест в гиперсферической вселенной. Если в эйнштейновской вселенной вы будете двигаться по прямой, в конце концов вы вернетесь в точку отправления со стороны, противоположной той, в которую когда-то отправились, – точно так же, как, двигаясь всегда только прямо вперед, мы в конце концов обогнем Землю. Больше того, за время нашего путешествия ничего не изменится – эйнштейновская вселенная построена как неизменная во времени. Чтобы обеспечить такие ее свойства, Эйнштейн даже ввел в свои уравнения дополнительный член, названный им космологическим членом и обозначенный греческой буквой – сегодня мы называем его космологической постоянной[46]. λ-член Эйнштейна описывает темную энергию пространства, которая проявляется во Вселенной на самых больших масштабах, – что-то вроде антигравитации или космического отталкивания. Эйнштейн увидел, что для гиперсферы некоторого определенного размера притяжение всего вещества и отталкивание, вызванное λ-членом, могут идеально уравновешиваться, – такая Вселенная не расширяется, не сжимается и существует в вечном прошлом и вечном будущем. Это и была Вселенная, какой он ее себе представлял, и единственная, как он думал, согласующаяся с глубоким физическим смыслом его теории.

Эйнштейновское видение космоса, которое позволяло описывать всю Вселенную единым уравнением, ясно показало, что общая теория относительности может привести нас туда, куда законам Ньютона путь был закрыт. В рамках статического гиперсферического пространства-времени общая форма и размеры Вселенной связаны с содержащимся в ней количеством материи и темной энергии. Это значило, что общая теория относительности действительно способна дать фантастические ответы на древние вопросы. Своей трактовкой Вселенной как целого Эйнштейн в некотором смысле прочно вписал «внешнюю сферу» моделей Вселенной древнего мира в рамки современной науки. И хотя модель Вселенной Эйнштейна оказалась и близко не соответствующей действительности, его пионерские исследования обозначили момент рождения современной релятивистской космологии.

Однако пройдет еще десять лет, прежде чем Леметр начнет понимать, насколько истинное космологическое значение теории относительности выходит за пределы первоначальных представлений Эйнштейна и всех остальных.

Леметр был интереснейшей и очень привлекательной фигурой[47]. Родился он в 1894 году в Шарлеруа на юге Бельгии. Из-за начавшейся Первой мировой войны ему пришлось бросить университет, где он получал инженерное образование. Когда в августе 1914 года немцы вторглись в Бельгию, юный Жорж пошел добровольцем в пехоту и в составе бельгийской армии участвовал в битве при Изере, вблизи границы с Францией. Противостояние тянулось два месяца, пока бельгийцы не открыли оросительные каналы, прорытые к морю, – этот потоп остановил немецкое наступление. Рассказывают, что в моменты затишья в окопах Леметр пытался читать классические труды по физике, в том числе Leçons sur les Hypothèses Cosmogoniques («Лекции о космогонических гипотезах») Анри Пуанкаре. Согласно семейной легенде, Жорж навлек на себя гнев капрала, когда осмелился указать на математическую ошибку в армейском руководстве по баллистике.

После войны, следуя ощущаемому им «двойному призванию», Леметр поступил в Католический университет в Лёвене[48], где стал изучать физику, и в семинарию в Малине, где получил специальное разрешение кардинала Мерсье на изучение новой теории относительности Эйнштейна. В 1923 году, уже в пасторской сутане, он пересек Ла-Манш, чтобы поработать с Эддингтоном в Кембриджской обсерватории.

Обладая глубокими познаниями не только в физике, но и в философии, Леметр вполне мог вдохновляться прозрениями шотландского мыслителя XVIII века Дэвида Юма, когда избрал в науке подход на пересечении математической теории и астрономических наблюдений. В своем главном труде «Исследования о человеческом разумении» Юм утверждал, что в основе наших знаний лежит опыт. Признавая силу математики, Юм предостерегал от абстрактных построений, изолированных от реального мира: «Если рассуждать a priori, что угодно может показаться способным произвести что угодно другое. Падение камня может, пожалуй, потушить Солнце, а желание человека – управлять обращением планет по их орбитам»[49]. Провозглашая опыт основой всех наших теорий, Юм тем самым помог заложить основы подхода к науке как к индуктивному процессу, уходящему корнями в эксперимент и в наши наблюдения Вселенной.

В подобном же духе Леметр подытожил свою собственную позицию: «Все идеи тем или иным путем приходят к нам из реального мира, в соответствии с принципом Nihil est in intellectu nisi prius fuerit in sensu[50]. Разумеется, идея, которая вырастает из факта, должна выходить за его пределы и следовать естественному течению мысли, фундаментальной функции интеллекта. И все же это, возможно, один из наиболее ценных уроков, которым учит нас странность физики: этим течением необходимо управлять, оно не должно терять связи с фактами, оно должно позволять себе быть обусловленным ими. Здесь, как и во многих других областях, мы должны найти удачный баланс между туманным идеализмом, который блуждает во тьме, и узким позитивизмом, который всегда остается стерильным[51].

Переехав из английского Кембриджа в Кембридж, что в штате Массачусетс, чтобы поработать в обсерватории Гарвардского колледжа, Леметр стал свидетелем «Великого спора», дебатов, состоявшихся в Вашингтоне в январе 1925 года. Обсуждаемый вопрос состоял в том, что представляют собой замеченные на небе еще в Средние века спиральные туманности – гигантские газовые облака в составе Млечного Пути, или отдельные далекие галактики. С помощью нового 100-дюймового телескопа Хукера на Маунт-Вилсон близ Пасадены, крупнейшего в мире телескопа тех времен, американский астроном Эдвин Хаббл и его коллеги разрешили участки двух таких туманностей (в Андромеде и в Треугольнике) на отдельные звезды, а затем использовали характерные свойства пульсирующих звезд – цефеид – в этих туманностях для оценки расстояний до них[52]. К их изумлению, расстояния оказались порядка миллиона световых лет – гораздо дальше границ нашего Млечного Пути. Это были галактики! Наблюдения Хаббла сразу сделали Вселенную в тысячи раз больше!

33Цит. по: Abraham Pais, “Subtle Is the Lord—”: The Science and the Life of Albert Einstein (Oxford: Oxford University Press, 1982). Изд. на русском языке: Пайс А. Научная деятельность и жизнь Альберта Эйнштейна / Пер. с англ. В. И. и О. И. Мацарских. Под ред. А. А. Логунова. – М.: Наука, 1989.
34Язык криволинейной или неевклидовой геометрии, использовавшийся Эйнштейном, был развит в столетии такими математиками, как Карл Фридрих Гаусс и Бернгард Риман. Они увидели, что обычные правила геометрии, которые многие из нас учили в школе, вроде знаменитой теоремы Пифагора или теоремы о том, что сумма углов треугольника составляет 180 градусов, на искривленных поверхностях не действуют. Например, сумма углов треугольника, нарисованного на поверхности апельсина (или на поверхности Земли), больше 180 градусов. До Гаусса и Римана искривленные поверхности всегда рассматривались как помещенные в нормальное трехмерное евклидово пространство. Но Гаусс показал, что геометрические свойства двумерных криволинейных поверхностей, такие как понятия прямой линии или угла, можно определить внутренним образом, безотносительно к чему бы то ни было вне их. Это открыло Риману путь к тому, чтобы представить как криволинейное и все трехмерное пространство, отличающееся, таким образом, от евклидового. Эйнштейн представлял себе пространство именно так, и он сделал следующий шаг: описал весь физический мир в терминах четырехмерной криволинейной геометрии пространства-времени. Искривленное пространство-время подчиняется правилам неевклидовой геометрии в четырех измерениях, не нуждаясь при этом в привлечении чего-то извне. Физически это, к примеру, означает, что Вселенная не нуждается для описания своего существования и расширения в помещении ее в некий объем большего размера.
35John Archibald Wheeler and Kenneth Ford, Geons, Black Holes, and Quantum Foam: A Life in Physics (London: Norton, 1998), 235.
36Pais, “Subtle Is the Lord.” Изд. на русском языке: Пайс А. Научная деятельность и жизнь Альберта Эйнштейна / Пер. с англ. В. И. и О. И. Мацарских. Под ред. А. А. Логунова. – М.: Наука, 1989.
37Сообщение по спецкабелю для The New York Times, 10 ноября 1919 года.
38Это значение радиуса появилось в физике вовсе не впервые. Еще в 1700-х Джон Мичелл и Пьер-Симон Лаплас в рамках механики Ньютона нашли, что сферическая масса M, сжатая до такого радиуса, имела бы скорость убегания, равную скорости света. Такой гипотетический объект не мог бы излучать частицы света; его можно рассматривать как предшественника понятия черной дыры.
39См., например: Georges Lemaître, “L’univers en expansion,” Annales de la Société Scientifique de Bruxelles A53 (1933): 51–85. Английский перевод: “The Expanding Universe” // General Relativity and Gravitation 29, no. 55 (1997): 641–80.
40На протяжении большей части своей жизни нормальная звезда поддерживает равновесие, не сжимаясь под действием собственной силы тяжести, благодаря тепловому давлению, обусловленному энергией ядерного синтеза – превращения ядер водорода в ядра гелия. Однако в конце концов звезда истощает свое ядерное топливо и сжимается. Если звезда с самого начала не слишком массивна, то давление, создаваемое отталкиванием между электронами (или между нейтронами и протонами), в конечном счете останавливает сжатие, и звезда стабилизируется в виде белого карлика (или нейтронной звезды). Однако американский астрофизик индийского происхождения Субраманьян Чандрасекар получил Нобелевскую премию за то, что в 1930 году доказал существование предельной массы белого карлика. А в 1939 году Роберт Оппенгеймер и Джордж Волков показали, что предельную массу имеют и нейтронные звезды. Конечный итог заключается в том, что не существует известного состояния вещества, которое могло бы остановить гравитационный коллапс достаточно массивных звезд – и, как полагают, они продолжают сжиматься, образуя черные дыры.
41Roger Penrose, “Gravitational Collapse: The Role of General Relativity” // La Rivista Del Nuovo Cimento 1 (1969): 252–76.
42Roger Penrose, “Gravitational Collapse and Space-time Singularities” // Physical Review Letters 14, no. 3 (1965): 57–59.
43Уравнение Эйнштейна содержит в правой части величину 8πG/c4, умножаемую на содержание массы и энергии в веществе. Количественное значение этой величины крайне мало, а это значит, что для того, чтобы хоть в малой степени деформировать пространство-время, описываемое левой частью уравнения, требуется огромное количество массы или энергии. Чтобы дать об этом какое-то представление, скажем, что масса всей планеты Земля деформирует пространство в ее окрестности по сравнению с нормальным евклидовым пространством на величину порядка 10-9.
44Эйнштейн, письмо к Виллему де Ситтеру от 12 марта 1917 года; см.: Collected Papers, vol. 8. Eds. Albert Einstein, Martin J. Klein, and John J. Stachel (Princeton University Press, 1998): Doc. 311.
45Для знакомства с более подробным изложением истории открытия расширения Вселенной рекомендую книгу Гарри Нуссбаумера и Лидии Бьери: Harry Nussbaumer and Lydia Bieri, Discovering the Expanding Universe (Cambridge: Cambridge University Press, 2009).
46В своих работах Эйнштейн писал маленькую λ, но сейчас во всех работах и учебниках пишут заглавную букву L.
47С удовольствием рекомендую биографию Жоржа Леметра: The Atom of the Universe, by Dominique Lambert (Kraków: Copernicus Center Press, 2015).
48В русскоязычной литературе встречается также французское название этого города в Бельгии – Луве́н. – Примеч. ред.
49Юм Д. Исследование о человеческом разумении. Пер. С. И. Церетели. – М.: Прогресс, 1995. – Примеч. пер.
50Здесь Леметр цитирует Фому Аквинского: «Нет ничего в разуме, чего бы не было раньше в чувстве».
51Жорж Леметр, «Странность Вселенной» (L’Etrangeté de l’Univers), лекция, прочитанная в 1960 году на Circolo di Roma; текст опубликован в Pontificiae Academiae Scientiarum Scripta Varia 36 (1972): 239.
52Цефеиды – пульсирующие звезды, светимость которых увеличивается и падает с периодами от месяцев до одного дня. Генриетта Ливитт, одна из первых женщин-астрономов современной эпохи, заметила интересное соотношение между периодом пульсаций цефеид и их светимостью: у менее ярких цефеид периоды короче. Это значило, что наблюдения периодических изменений блеска цефеид можно использовать для измерения расстояний в космологии. Цефеиды стали первым надежным средством, которое позволило астрономам измерять расстояния до далеких объектов во Вселенной; этот метод мастерски применил Хаббл для оценки расстояний до спиральных туманностей.
Sie haben die kostenlose Leseprobe beendet. Möchten Sie mehr lesen?