Бесплатно

A History of Inventions, Discoveries, and Origins, Volume II (of 2)

Текст
Автор:
0
Отзывы
iOSAndroidWindows Phone
Куда отправить ссылку на приложение?
Не закрывайте это окно, пока не введёте код в мобильном устройстве
ПовторитьСсылка отправлена

По требованию правообладателя эта книга недоступна для скачивания в виде файла.

Однако вы можете читать её в наших мобильных приложениях (даже без подключения к сети интернет) и онлайн на сайте ЛитРес.

Отметить прочитанной
Шрифт:Меньше АаБольше Аа

STEEL

Steel is a carburet of iron, and possesses some remarkable properties, by which it is distinguished from common iron. It is of such a superior degree of hardness, that it is capable of filing the latter; it strikes fire with siliceous stones, and scratches the hardest glass; it is heavier, emits a stronger sound, exhibits on fracture a finer grain, assumes a brighter white lustre when polished, is susceptible of greater elasticity; becomes more slowly magnetic, but retains that power longer; does not so easily acquire rust; in the fire it assumes various strong tints, and when heated is speedily cooled in cold water, but is then harder, more brittle and less pliable. In consequence of these qualities it is fit for many uses to which common iron either cannot be applied, or is less proper.

It is certain that the invention of steel is of very great antiquity. In the Old Testament, however, the mention of it is very doubtful, according to Professor Tychsen, whose remarks on this subject I subjoin in a note below806; but it appears that it was used as early as the time of Homer, and that the Greeks gave to it different names, one of the most common of which was stomoma, though it seems certain that this word did not so much denote steel itself as the steeled part of an instrument, or the operation of steeling. The name chalybs was given to steel from the Chalybes, a people on the southern shore of the Pontus Euxinus, between Colchis and Paphlagonia, who had considerable mines, and in particular iron and steel works: though others, on the contrary, derive the name of the people from the principal article of their commerce. This derivation appears the more probable, as Justin says that a river of Spain, on which there were steel works, was named Chalybs, but at a much later period. Some also have ascribed to the Chalybes the invention of iron, which however is much older.

But it seems to be less known that adamas also at first denoted steel. This is expressly said by Hesychius, and many epithets derived from adamas are applied to articles made of steel or of iron. Among these may be mentioned the helmet of Hercules, in Hesiod807, and the so-called adamantine chains, gates, and bars of the poets, which in dictionaries are always explained as consisting of precious stones.

It was not till a late period that this word was applied to the most costly of all the precious stones. In this sense it occurs neither in Homer, Hesiod, Herodotus, Orpheus, nor Dioscorides, though the first of these writers often describes various kinds of valuable ornaments. Goguet and others thence conclude that the diamond was not then known. At present I cannot enter into the history of this stone; but I must own, that I consider the knowledge of it to be older, and suspect that it was first introduced under another name, and is mentioned by Orpheus and some others under that of jasper (jaspis). This poet compares his jaspis to rock crystal, and says that it kindles fire in the same manner. That he knew how to use rock crystal as a burning-glass, he expressly tells us himself; but he certainly could not procure a diamond of such a size as to be able to burn with it. From its vitreous nature however he conjectured, and very properly, that it might be employed for that purpose. He calls the jaspis transparent, compares it to glass, and says that it had that sky colour which at present is named color hyalinus. This is probably the reason why Dioscorides and others call some kinds of jasper transparent and sky-coloured. The jaspis in the Revelation of St. John808, described as a costly transparent crystalline kind of stone, was perhaps our diamond, which afterwards was everywhere distinguished by that name.

The Romans borrowed from the Greeks the word chalybs; and in consequence of a passage in Pliny809, many believe that they gave also to steel the name of acies, from which the Italians made their acciajo, and the French their acier. The word acies, however, denoted properly the steeled or cutting part only of an instrument. From this, in later times, was formed aciarium, for the steel which gave the instrument its sharpness, and also aciare to steel810.

At present there are two methods of making steel; the first of which is by fusion either from iron-stone or raw iron, and the second by cementation. I have never found in the works of the ancients any traces of steel prepared by cementation; nor am I acquainted with the antiquity of that process, though the ancients, without knowing it, employed it for brass. Spielman says811, that Pliny in one part calls it tostio; but this word occurs neither in Pliny nor in any ancient writer. It is however possible that the word torrere may somewhere signify cementation, but I have not yet met with an instance of it.

The preparation however by fusion, as practised by the Chalybes, has been twice described by Aristotle; but as I have already given in another work812 everything I was able to collect towards an explanation of these passages, I shall not here repeat it. I shall only remark, that the steel of the ancients, in consequence of not being cemented, suffered itself to be hammered, and was not nearly so brittle as the hardest with which we are acquainted at present.

 

On the other hand, the singular method of preparing steel employed by the Celtiberians, in Spain, deserves to be here described. According to the account of Diodorus813 and Plutarch814, the iron was buried in the earth, and left in that situation till the greater part of it was converted into rust. What remained, without being oxydized, was afterwards forged and made into weapons, and particularly swords, with which they could cut asunder bones, shields, and helmets. However improbable this may appear, it is nevertheless the process still used in Japan; and Swedenborg has introduced it among the different methods of making steel815.

The art of hardening steel by immersing it suddenly, when red-hot, in cold water, is very old816. Homer says, that when Ulysses bored out the eye of Polyphemus with a burning stake, it hissed in the same manner as water when the smith immerses in it a piece of red-hot iron, in order to harden it817. Sophocles uses the comparison of being hardened like immersed iron818; and Salmasius819 quotes a work of an old Greek chemist, who treats on the method of hardening iron in India. It is also a very ancient opinion, that the hardening depends chiefly on the nature of the water. Many rivers and wells were therefore in great reputation, so that steel works were often erected near them, though at a considerable distance from the mines. Instances of this may be found in Pliny820 and in Justin821. The more delicate articles of iron were not quenched in water, but in oil.

An opinion, it is well known, long prevailed, that there were various fluids and mixtures which communicate to steel different degrees of hardness, and every artist thought he knew a peculiar hardening kind of water, the preparation of which he kept a secret. This notion is by some still maintained822; because there are often found stones cut by the ancients, which the moderns, on account of their hardness, as is believed, have seldom ventured to touch. Of this kind is the hardest porphyry. There are people who still endeavour to find out that hardening kind of water, in which the ancients prepared their tools for cutting such stones. According to Vasari823, that water was actually discovered by the archduke Cosmo, in the year 1555. Among a large collection of stones he had a block of porphyry, from which he wished a bason to be made for a well, but was told by the most experienced artists that it was impossible. On this, says Vasari, in order to render the work possible, he prepared from certain herbs, which he does not name, a water wherein the red-hot tools were quenched, and by these means so hardened, that they were capable of cutting porphyry. With tools tempered in this manner the artist Francesco del Tadda not only made the required bason, but various other curious articles824.

Winkelman, therefore, does injustice to Vasari when he says, “Vasari, in pretending that Cosmo archduke of Tuscany discovered a water for making porphyry soft, betrays childish credulity.” On the contrary, he very properly asserts that there is no water of such a quality as to soften porphyry; though Porta and many old writers imagined that they were acquainted with one capable of producing on that stone, which they considered as a species of marble, the same effects as an acid does on the latter. But Vasari says nothing of the kind.

After Tadda’s death, the art of cutting porphyry came to Raphael Curradi, who communicated to Dominico Corsi this secret, which was afterwards employed by Cosimo Silvestrini825. I, however, agree in opinion with Winkelman and Fiorillo, our learned connoisseur in the arts, that the method of working porphyry was known in every age, even in the most barbarous, though artists, no doubt, preferred working on other stones which were less brittle and hard. We know however from the latest researches, that all the kinds of hardening water hitherto invented are in nothing superior to common water; and that in hardening more depends on the nature of the steel, or rather on the degree of heat, than on the water; although it is true that the workman does right when he adds to the water a thin cake of grease, or pours over it hot oil, through which the steel must necessarily pass before it enters the water, for by these means it is prevented from acquiring cracks and flaws.

The invention of converting bar iron into steel by dipping it into other fused iron, and suffering it to remain there several hours, is commonly ascribed to Reaumur826. But this process is mentioned by Agricola, Imperati and others, as a thing well-known and practised in their time.

Pliny, Daimachus827 and other ancient writers mention various countries and places which, in their time, produced excellent steel. Among the dearest kinds were the ferrum Indicum and Sericum. The former appears to be the ferrum candidum, a hundred talents of which were given as a present to Alexander in India828. Is it not probable that this was the excellent kind of steel still common in that country, and known under the name of wootz, some pieces of which were sent from Bombay in the year 1795 to the Royal Society of London? Its silver-coloured appearance when polished may have, perhaps, given occasion to the epithet of candidum. The method of preparing it is still unknown, but it is supposed to be a kind of fused steel829. This however is a mere conjecture, unsupported by any proofs830. At what time was damasked steel obtained from the Levant?

 

[Three kinds of steel are now principally manufactured; bar or blistered steel, shear steel and cast steel.

The bar or blistered steel is made by the process of cementation: this consists in putting bars of the purest malleable iron alternately with layers of charcoal or soot into a proper furnace; the air being carefully excluded and the whole kept at a red heat for several days. By this process the carbon combines with the iron, altering its texture from fibrous to granular or crystalline, and rendering the surface blistered. The action of the carbon occasions fissures and cavities in the substance of the bars, rendering them unfit for tool-making, until they are condensed and rendered uniform by the operation of tilting, i. e. compression by a powerful hammer worked by machinery.

Shear steel is made by breaking up bars of blistered steel into lengths of about 18 inches, and binding four or six of them together with a steel rod, and then heating them to a full welding heat, the surface being covered with fine clay or sand to prevent oxidation. They are then drawn out into a bar, hammered, tilted and rolled. In this state it is susceptible of a much finer polish, and is also more tenacious and malleable, and fit for making strong springs, knives, &c.

Cast steel, which was first made by Mr. Huntsman at Attercliff, Sheffield, in 1770, is made by melting blistered steel, casting it into ingots and rolling it into bars. In this condition its texture is much more uniform, closer and finer grained. The different degrees of hardness required for steel are given by the process called tempering, which is effected by heating the steel up to a certain temperature, and then quenching it suddenly in cold water. Its hardness and brittleness are thus much increased, but it may be again softened by exposure to heat simply.]

STAMPING-WORKS 831

In order to separate metallic ores from the barren rock or stones with which they occur, and to promote their fusion, it is necessary that the pieces of rock or stone should be reduced to small fragments by stamping them. For those ores which occur in a sandy form, this is unnecessary; and in regard to rich silver ore, which contains very little or no lead and other metals, this process might be hurtful; for with dry stamping a great deal would fly off in dust, and with wet stamping a considerable part would be washed away by the water.

However imperfect the knowledge of the ancients may have been in regard to the fusion of ores, they were acquainted with the benefit of stamping; but the means they employed for that purpose were the most inconvenient and expensive. They reduced the ore to coarse powder, by pounding it in mortars, and then ground it in hand-mills, like those used for corn, till it acquired such a degree of fineness that it could be easily washed. This is proved by the scanty information which we find in Diodorus Siculus832 and Agatharcides833, in regard to the gold mines of the Egyptians; in Hippocrates, respecting the smelting-works of the Greeks834, and in Pliny in regard to the metallurgy of the Romans835. Remains of such mortars and mills as were used by the ancients have been found in places where they carried on metallurgic operations; for instance, in Transylvania and the Pyrenees. The hand-mills had a resemblance to our mustard-mills836; and for washing the mud they employed a sieve, but in washing auriferous sand they made use of a raw hide. From the latter, Count von Veltheim has explained, in a very ingenious manner, the fable of the ancients concerning the ants which dug up gold837.

Our works for pounding ore, at present, are stamping-mills, which consist of heavy stampers shod with iron. These stampers are put in motion by a cylinder furnished with cogs, which is driven by a water-wheel, and pound the ore in troughs lined with iron. When the ore subjected to this operation is poor, water is introduced into the troughs, which running through grates in the bottoms of them, carries with it the pounded matter into a gutter, where it becomes purified, and deposits the mud mixed with sand.

One might conjecture that this apparatus was invented soon after the invention of cylinders with cogs; but this was not the case, though I am not able to determine the antiquity of these cylinders. At any rate, it is certain that mortars and sieves were used in Germany throughout the whole of the fifteenth century; and in France, to which the art of mining was conveyed in general from that country at a late period, they were still employed about the year 1579838. In the oldest times men were not acquainted with the art of employing water at mines in so advantageous a manner as at present. The bellows were worked by men; and those aqueducts raised on posts, by which distant water may be made to act on machines, was not yet invented. On this account, remains of ore are found in places where the moderns, in consequence of that indispensable article water, would not be able to maintain metallurgic works839. According to the researches which I have hitherto had an opportunity to make, our stamping-mills were invented about the beginning of the sixteenth century, and, as appears, in Germany; but I cannot determine with certainty either the name of the inventor or his country. Those who established or introduced the first stamping-works in Saxony and the Harz are only mentioned; and these, as usual, have been considered as the inventors.

In the year 1519 the processes of sifting and wet-stamping were established in Joachimsthal by Paul Grommestetter, a native of Schwarz, named on that account the Schwarzer, whom Melzer praises as an ingenious and active washer; and we are told that he had before introduced the same improvements at Schneeberg. Soon after, that is in 1521, a large stamping-work was erected at Joachimsthal, and the process of washing was begun. A considerable saving was thus made, as a great many metallic particles were before left in the washed sand, which was either thrown away or used as mortar for building. In the year 1525 Hans Pörtner employed at Schlackenwalde the wet method of stamping, whereas before that period the ore there was ground.

In the Harz this invention was introduced at Wildenmann by Peter Philip, who was assay-master there, soon after the works at the Upper Harz were resumed by Duke Henry the younger about the year 1524. This we learn from the papers of Herdan Hacke or Hæcke, who was preacher at Wildenmann in 1572. As far as can be concluded from his imperfect information, the first stamping-work there consisted only of a stamper raised by means of two levers fixed to the axis of a wheel. The pounded ore was then thrown into a sieve, called in German the sachs840, and freed from the coarser parts. But as this stamping was performed in the dry manner, it produced so much dust that the labourers were impeded by it, and the ore on that account could not be properly smelted. The business however was not given up; new improvements were made, and soon after Simon Krug and Nicholas Klerer introduced the wet method, and fortunately brought it to perfection841.

It is said in several modern works that wet stamping was invented in 1505, by a Saxon nobleman named von Maltitz. This assertion has been so often repeated, that it was known to Gobet842, who adopted it as truth. I have not however been able to find the historian on whose testimony it is founded; but it appears by Gauhen’s Dictionary of Nobility that Sigismund Maltitz was chief surveyor of forests at the Erzgebürge, to the electorate of Saxony in the sixteenth century.

KITCHEN VEGETABLES

The greater part of our kitchen vegetables, that is to say those plants which, independently of the corn kinds, are cultivated as food in our gardens, are partly indigenous and partly foreign. Of the former many at present grow wild, such as asparagus; but by continued cultivation, through a long series of years, they have produced numerous varieties, which differ as much from the wild plants as the European females from those of New Zealand. Many of our indigenous vegetables are collected for food, but are not reared expressly for that purpose; and these even, in all probability, might be improved by culture. Some indeed are here and there reared in an artificial manner, though we reckon them among our weeds; for example, dandelion, Leontodon taraxacum, the first leaves of which in spring are employed in the northern countries as salad. In some parts of England this plant is sown throughout the whole summer; and its leaves being blanched, it is used in winter as endive. Culture frees many plants from their harsh taste, makes them tender, larger and more pulpy, and produces them at a season when the wild ones have become unfit for use.

Our foreign kitchen vegetables have, for the most part, been procured from the southern countries, but chiefly from Italy; and the number of them has increased in an uncommon degree in the course of the last two centuries. Many of them require laborious attention to make them thrive in our severe climate. On the other hand, some grow so readily, and increase so much without culture, even in the open fields, that they have become like indigenous weeds, as is the case with hops, which at present abound in our hedges. Some plants, however, both indigenous and foreign, which were formerly raised by art and used at the table, are no longer cultivated, because we have become acquainted with others more beneficial. Many of them served our forefathers in the room of foreign spices, to the use of which trading companies have accustomed us, much to their advantage and to our hurt. It is true also that many have been banished merely by fashion; for this tyrant, which rules with universal sway, commands the taste as well as the smell to consider as intolerable articles to which our ancestors had a peculiar attachment.

In the oldest times mankind were so fond of sweet things, that the goodness and agreeable taste of every kind of food was determined according to the degree of its sweetness; and such is the manner of judging even at present throughout all the East, in Africa, and in America. This is the case also among us with the greater part of the lower classes, who are not able to follow the mode of richer tables. In the northern countries this taste is almost everywhere prevalent. Thus the Swedes spoil, by the addition of sugar, costly Rhenish wine, sour kraut, and other articles, the agreeable tartness of which is gratifying to other nations. In proportion to their population and luxury, the Swedes seem to use more sugar than the Germans, and the Germans more than the English or French; and one might almost suspect that a taste for sweet things were in the inverse ratio of civilization843. At any rate, one can thus explain why many vegetable productions, which some centuries ago were reckoned among the most agreeable dishes, appear to us to be nauseously sweet. Skirret, which the emperor Tiberius caused to be brought for the use of his table from the Rhine, is little relished at present; and the case is the same with parsnips, some kinds of apples, and several other things.

Fashion sometimes recalls into use species long forgotten, and with the greatest success, when they are introduced under a different name. Thus, after an interval of many years, some began to cultivate again monks-rhubarb844, and to recommend this sourish plant instead of the more savoury spinage. According to Bock, it was transplanted in the middle ages by the monks from the woods into gardens, to which it has been again brought back under the imposing appellation of English spinage.

Before the commencement of the Christian æra, when the use of sensual enjoyments was not so well-regulated and modified by religious and political principles, many vegetables and other dishes were praised and recommended by writers on agriculture and cookery, as well as by the most favourite poets and eminent authors, on account of effects which cannot at present be named, except in the writings of physicians, without disgusting the reader and incurring the imputation of indelicacy. When this mode of thinking began to prevail, people detested to see in their gardens or on their tables plants which, in consequence of indecent properties, were generally known; and by being thus disused, the knowledge of them was at length so much lost, that we know only their old names, and what the ancients have related respecting them. In this manner, many receipts in Apicius are totally unintelligible, because we are no longer acquainted with the things for the preparation of which he gives directions. Of this kind are the numerous bulbous roots (bulbi), which formed the most favourite dishes of the Greeks and the Romans, and which at present no botanist, much less commentator, would be able to determine. They belong to the lost arts, but not to those which were abandoned because better ones were found to supply their place. The American vanilla, which perhaps was indebted only to its high price for the permission of being mixed with chocolate, does not certainly supply the place of the ancient Megarean bulbs, as our gunpowder does that of the Greek fire.

Among those kitchen vegetables which were formerly cultivated, but at present are no more esteemed, are the following: – Winter-cresses845, an indigenous plant, the young leaves of which, like water-cresses, may be eaten in winter as salad; also common alexanders846, which in the seventeenth century was used instead of celery; bulbous chærophyllum847, the roots of which are still brought to market at Vienna, where people well know what is good, and where they are boiled and eaten as salad with vinegar and oil. Rampion848 was formerly used in the like manner. The earth-nut849, which grows wild in many parts of Germany, is still cultivated in Holland and in some districts on the Rhine. Rocket (Eruca sativa), the young leaves of which were readily eaten by our forefathers as salad, is no longer esteemed, partly on account of its harsh taste, and partly on account of its nauseous smell, which resembles that of rancid bacon; it has however been still retained in Italy, “excitet ut Veneri tardos eruca maritos850.” Vetches (Lathyrus sativus, and Cicer) are now banished from our gardens, as experience has shown that they are prejudicial to the health. When pepper was so dear, that to promise a saint yearly a pound of it was considered as a liberal bequest, economical housewives seasoned their dishes with the leaves of pepper-wort (Lepidium latifolium), which on this account is called at present in England poor man’s pepper.

Borage (Borago officinalis), since the fourteenth, or at least the fifteenth century, has been sown not only for medicinal purposes, but for the use of the kitchen. The young leaves, which however soon become hard, rough, and unfit for the table, were used in soup, and the beautiful blue flowers were put into salad and wine. This plant was not known to the ancients; for the conjecture that it was what they called buglossum, is not very probable. As far as I have been able to learn, Nicholas Myrepsus, who lived in the beginning of the fourteenth century, is the first who uses the name πουράκιον, which certainly means borago. But who knows whence this writer, who introduces in his works a great many new inexplicable names, some of them formed from the Greek, Latin, and Italian, obtained that appellation? Some of the old botanists have conjectured that it is derived from the word corago, which Apuleius, whose period is uncertain, gives as a synonym of buglossum. Some think that the reading in Apuleius ought to be borago; and others assert that corago is the true name, and arose from the quality which the plant has of strengthening the heart; consequently we ought properly to read corago, and not borago851. It is probable that our forefathers, under the idea that their borage was the buglossum of the ancients, and therefore had the property of strengthening the heart, threw the flowers into wine, that their spirits might by these means be more enlivened. Our borage is certainly a foreign plant, and Cæsalpinus said that it was brought from other countries to Italy. Linnæus852 positively states that it first came from Aleppo; but I have not yet been able to find on what authority this assertion is founded. At present borage, at least in the German cookery, is no longer used.

Among the kitchen vegetables of which no certain traces are to be found in the works of the ancients, is spinage (Spinacea oleracea). Its native country is unknown; but the name is new, and certainly derived from the nature of its prickly seeds. As far as I know, it first occurs in the year 1351, among the food used by the monks on fast-days853; and at that time it was Spinargium or Spinachium. Meursius found in the middle ages σπινάκιον, in a poem which he has often mentioned, but not defined with sufficient accuracy854. This plant seems to have been made known from Spain; for many of the old botanists, such for example as Bock, call it olus Hispanicum. Ruellius and others name it Atriplex Hispaniensis; and the latter adds, that the Arabians or Moors called it Hispanach, which signifies Spanish plant; it is however well known that formerly everything foreign was styled Spanish. None of the kitchen vegetables of the ancients seem to approach nearer to spinage than their Blitum, which Rondolet considered to be the same. But all the properties assigned to this vegetable production, namely, that it was insipid, and that on this account it was necessary to render it palatable by the addition of vinegar, pepper, and other things; that it readily multiplied; that it was indigestible and gently aperient; perfectly correspond, not only with our spinage, but with many other plants, such, for example, as our beet and orach, and the good king Henry (Chenopodium bonus Henricus), the young leaves of which are still dressed as spinage. It is also possible that the blitum of the ancients may have been a kind of Amaranthus, some species of which are certainly eatable. Blitum, therefore, will remain as difficult to be defined as the malva, which was used at the same time.

The Brassicæ of the ancients belonged certainly to the cabbage genus; yet no one, as far as I know, has examined botanically what is said of them, and completely proved their identity. It would however be fruitless labour to attempt to apply our modern names to the cabbage kinds of the ancients, and search out in the writings of the Greeks and the Romans those which we use at present; for by continued culture, through so many ages and in so many countries, new varieties have from time to time arisen, and old ones must have become lost; so that it is impossible for us to have all the varieties of the ancients, as it was for them to be acquainted with the whole of those produced in our times. I cannot therefore venture to assert that we still possess that kind of cabbage which the ancients, to prevent intoxication, ate raw like salad855. We can dress in this manner cabbage heads when they are chopped fine, but we do not know with certainty whether the ancients were acquainted with our cabbage; though Ruellius, not without probability, considered as such that species which in the time of Pliny was known under the name of lacuturris856.

806In regard to the hardening of iron and the quenching of it in water, nothing, as far as I know, occurs in the Hebrew text of the Scriptures. The passages where it seems to be mentioned are, Isaiah, chap. xliv. ver. 12. “The smith bends the iron, works it in a fire of coals, and forms it with the hammer; he labours on it with a strong arm,” &c. according to the translation of Michaelis. It may indeed be translated otherwise, but it certainly alludes to the formation of an image of metal. The words, chap. liv. ver. 16, are still more general.Iron, barzel, often occurs, and in some passages indeed steel may be understood under this name; for example, in Ezekiel, chap. xxvii. ver. 19, ferrum fabrefactum, or, according to Michaelis and others, sabre blades from Usal (Sanaa in Yemen). A pretty clear indication of steel is given in Jeremiah, chap. xv. ver. 12: “Iron from the north,” which is described there as the hardest. To the north of Judæa was situated Chalybia, the ancient country of steel. It appears that the Hebrews had no particular name for steel, which they perhaps comprehended under the term barzel, or distinguished it only by the epithet Northern, especially as the later Jews have for it no other name than אסטמא, istoma, which however is nothing else than the Greek στόμωμα, and signifies rather steeling or hardening. Chalamisch is certainly a hard kind of stone; granite or porphyry, according to Michaelis, who treats expressly of it in Supplem. ad Lex. Hebr. N. 740.
807Scutum Herculis, x. 137.
808Chap. xxi. ver. 11, 18, 19.
809Lib. xxxiv. sect. 41. p. 666. “Stricturæ vocantur hæ omnes, quod non in aliis metallis a stringenda acie vocabulo imposito. Et fornacum maxima differentia est; nucleus quidem ferri excoquitur in his ad indurandam aciem; aliquæ modo ad densandas incudes, malleorumve rostra.” According to my opinion, stricturæ was the name given to pieces of steel completely manufactured and brought to that state which rendered them fit for commerce. At present steel comes from Biscay in cakes, from other places in bars, and both these formerly were called stricturæ, because they were employed chiefly for giving sharpness to instruments or tools, that is, for steeling them. In speaking of other metals, Pliny says that the finished productions at the works were not called stricturæ (this was the case, for example, with copper), though sharpness could be given to instruments with other metals also. The words of Pliny last quoted are read different ways, and still remain obscure. I conjecture that he meant to say that some steel works produced things which were entirely of steel, and that others were employed only in steeling. I shall here remark that the stricturæ ferri remind us of the strigiles auri: such was the name given to native pieces of gold, which without being smelted were used in commerce. – Plin. xxxiii. 3. p. 616.
810See Vossii Etymol. and Martinii Lex. Philolog.
811Institut. Chimiæ, p. 252. He refers to lib. xxxiii. cap. 4.
812In my observations on Aristot. Auscult. Mirab. cap. 49.
813Diod. lib. v. cap. 33.
814Plut. de Garrul.
815De Ferro, i. p. 194. See also Watson’s Chem. Essays, i. p. 220. Of the iron works in Japan I know nothing further than what has been said by Thunberg in his Travels. That country possesses very little of this metal: but the sabres made there are incomparable; without hurting the edge one can easily cut through a nail with them; and, as the Japanese say, cleave asunder a man at one blow. These sabres are often sold for fifty, seventy, and even a hundred dollars.
816Lord Bacon seems not to have been of this opinion; see his Silva Silvarum, cent. i. § 86. But this method of hardening was usual in the eleventh or twelfth century; for it is described by Theophilus Presbyter, lib. iii. cap. 19.
817Odyss. ix. 391.
818Ajax, 720.
819Exercitat. Plin. p. 763.
820Lib. xxxiv. 14, p. 666.
821Lib. xliv. p. 620.
822[There can be no question that the hardening or tempering effect produced by the sudden immersion of heated steel in fluids has no relation to the quality of the fluid, save as regards its conducting power of heat. The more suddenly the heat is abstracted from the metal, the greater is the amount of hardness and brittleness. Mercury has been found superior to any other fluid for this purpose, undoubtedly because it is so good a conductor of heat.]
823Le Vite de Pittori. Bologna, 1681, 4to, i. p. 11.
824Some account of this artist is given in J. C. Bulengeri de Pictura, lib. ii. cap. 7, in Gronovii Thesaurus Antiq. Græc. ix. p. 875. On the other hand, Sturm says, in that part of the Ritterplatzes which relates to architecture, p. 18: “An archduke at Florence discovered again the art of working porphyry, but suffered it to die with him in the year 1556.”
825Florillo Gesch. der Zeichnenden Künste, 8vo, i. p. 461.
826Art de convertir le Fer en Acier, p. 245.
827Stephanus de Urbibus, under the word Λακεδαίμων, p. 413.
828Clemens Alexandr. in Pædagog. ii. p. 161, edit. Cologne, 1688, fol. says, speaking of luxury, “One can cut meat without having Indian iron.”
829Philos. Transact. 1795, ii. p. 322.
830[The manner in which iron ore is smelted and converted into wootz or Indian steel, by the natives at the present day, is probably the very same that was practised by them at the time of the invasion of Alexander; and it is a uniform process, from the Himalaya Mountains to Cape Comorin. The furnace or bloomery in which the ore is smelted, is from four to five feet high; it is somewhat pear-shaped, being about two feet wide at bottom and one foot at top; it is built entirely of clay, so that a couple of men may finish its erection in a few hours, and have it ready for use the next day. There is an opening in front about a foot or more in height, which is built up with clay at the commencement, and broken down at the end, of each smelting operation. The bellows are usually made of a goat’s skin, which has been stripped from the animal without ripping open the part covering the belly. The apertures at the legs are tied up, and a nozzle of bamboo is fastened in the opening formed by the neck. The orifice of the tail is enlarged and distended by two slips of bamboo. These are grasped in the hand, and kept close together in making the stroke for the blast; in the returning stroke they are separated to admit the air. By working a bellows of this kind with each hand, making alternate strokes, a tolerably uniform blast is produced. The bamboo nozzles of the bellows are inserted into tubes of clay, which pass into the furnace at the bottom corners of the temporary wall in front. The furnace is filled with charcoal, and a lighted coal being introduced before the nozzles, the mass in the interior is soon kindled. As soon as this is accomplished, a small portion of the ore, previously moistened with water, to prevent it from running through the charcoal, but without any flux whatever, is laid on the top of the coals, and covered with charcoal to fill up the furnace. In this manner ore and fuel are supplied, and the bellows are urged for three or four hours, when the process is stopped, and the temporary wall in front broken down; the bloom is removed with a pair of tongs from the bottom of the furnace. In converting the iron into steel, the natives cut it into pieces to enable it to pack better in the crucible, which is formed of refractory clay, mixed with a large quantity of charred husk of rice. It is seldom charged with more than a pound of iron, which is put in with a proper weight of dried wood, chopped small, and both are covered with one or two green leaves; the proportions being in general ten parts of iron to one of wood and leaves. The mouth of the crucible is then stopped with a handful of tempered clay, rammed in very closely, to exclude the air. As soon as the clay plugs of the crucibles are dry, from twenty to twenty-four of them are built up in the form of an arch in a small blast furnace; they are kept covered with charcoal, and subjected to heat urged by a blast for about two hours and a half, when the process is considered to be complete. The crucibles being now taken out of the furnace and allowed to cool, are broken, and the steel is found in the form of a cake, rounded by the bottom of the crucible. – Ure’s Dictionary of Arts and Manufactures, art. Steel.]
831I shall refer those desirous of being acquainted with the nature of this labour, to Gatterer’s Anleitung den Harz zu bereisen. Göttingen, 1785, 8vo. i. p. 101. [Figures of the stamping-works may be seen in Ure’s Dictionary of Arts and Manufactures, pp. 818 and 1119.]
832Diodor. iii. 13, p. 182.
833Photii Bibl. p. 1342.
834Hippocrates de Victus Rat. lib. i. sect. 4.
835Plin. xxxiii. 4, sect. 21.
836Gensane Traité de la Fonte des Mines. Par. 1770, i. p. 14.
837Von d. goldgrabenden Ameisen u. Greiffen der Alten. Helmst. 1799. This dissertation may be found also in a valuable collection of different pieces by the same author, printed at Helmstadt, 1800.
838See François Garrault, Des Mines d’Argent trouvées en France, Paris 1579, where mention is made only of mortars, mills and sieves. This Garrault is the first French writer on mining. His work, which is scarce, was printed by Gobet in the first part of the Anciens Minéralogistes de France, Paris 1779, 8vo.
839At the Nertschinsk works in Siberia, the machinery must be still driven by men or cattle, because all the dams and sluices are destroyed by the frost, and the water converted into ice. Some of the works there however have machinery driven by water during the few summer months.
840Sachs or sæx in old times denoted a cutting or stabbing instrument, such for example as schaar-sachs, a razor; schreib-sachs, a penknife. See Fritsch’s Wörterbuch, who derives sachs from secare. May not the word σάλαξ, which in Pollux means the sieve used at smelting-works, be of the same origin? I conjecture also that the coulter of the plough, which cuts the earth in a perpendicular direction, had the name of sech, and that the words säge and sichel have an affinity to it. If this derivation be right, the High but not the Low German must have of sachs made sech. The latter would have said sas or ses, as it says instead of sechs, ses; instead of wachs, was; instead of flachs, flas; and instead of fuchs, fos. Sech is named also kolter, as in the Netherlands kouter, which words have arisen no doubt from culter.
841Calvör Maschinenwesen, ii. p. 74.
842Anciens Minéral., i. p. 225.
843[The very reverse of this is now generally admitted, and the prosperity of a country may be judged of from the amount of sugar consumed in it.]
844Rumex patientia. Kerner, tab. 720.
845Barbarea plantaginea. Kerner’s Œkonom. Pflanzen, tab. 562.
846Smyrnium olusatrum. Kerner, 356.
847Chærophyllum bulbosum. Kerner, tab. 299. Jacquin, Flora Austriaca, i. tab. 63.
848Phyteuma spicata. Kerner, tab. 153.
849The tuberous roots of the Lathyrus tuberosus. Kerner, tab. 328.
850Columella. x. 109. Virgil, Moretum, 85.
851Apuleius de Virtute Herbar. cap. 41. Plinius, xxv. 8.
852Spec. Plantarum.
853Du Cange.
854Meursii Glossar. Anonymus de vulpe et lupo. In p. 657, he says that this poem was printed, but where we are not told.
855See the passages quoted by Niclas in Geopon. v. 11. 3, p. 345.
856Plin. xix. 8. sect. 41. The same species is mentioned by Columella, x. 138. But of red cabbage no account is found in any ancient author.