Применение квантового туннельного эффекта код

Text
0
Kritiken
Leseprobe
Als gelesen kennzeichnen
Wie Sie das Buch nach dem Kauf lesen
Schriftart:Kleiner AaGrößer Aa

Глава третья
Взрывобезопасность энергетического устройства

Для того чтобы утверждать, что данное ЭУ каталитического лизиса воды, катализатор-полупроводник, в рабочем режиме образования и горения газовой смеси работает так, что данная работа не вредит оператору, управляющему работой, и окружающей среде, необходимо рассмотреть данную систему на взрывобезопасность, оценить следующий параметр газов и газовой смеси.

Данный параметр – пределы взрывоопасности (взрываемости) газовой смеси, то есть смесь водорода и кислорода, определенного процентного взаимоотношения в данных пределах, рассматриваем в % (об.), безопасна и не взрывается относительно имеющихся параметров температуры и давления. Концентрационные пределы детонационного, взрывного сгорания водорода в смеси с воздухом следующие: 10% (об.) для нижнего предела и 59% (об.) для верхнего предела при нормальных условиях.

Верхний предел соответствует составу смеси с максимальной концентрацией водорода с минимальной, в более широких, чем предел детонации, пределах смесь взрывобезопасна.

Второй относительно проверки энергоэффективности устройства эксперимент проводится с целью определения энергетической эффективности работы аппарата c заданными параметрами горючей газовой смеси. Он проводится в герметичной экспериментальной установке. В камере синтеза устанавливается газоанализатор и датчики температуры.

Первое: концентрация водорода в газовой смеси, заданная управляющими параметрами устройства, составляет менее 10%, смесь пересыщена кислородом. Во-первых, это необходимо для обеспечения полного использования водорода; во-вторых, исключает загрязнение среды газом и нарушение баланса воды в экосистеме; и в-третьих, обеспечивает взрывобезопасность устройства.

Смесь до 10% (об.) водорода в воздухе горит, так как распространение пламени исходя из данных (прим. см. лит. 4) возможно, если инертного газа в смеси содержится менее 95%, исходя из того, что газ – азот. Положительный результат эксперимента дает нам возможность утверждать, что работа устройства с параметрами горючей смеси, соответствующими требованиям взрывобезопасности, энергетически эффективна. Значения концентрационных пределов детонационного взрывного сгорания водорода в смеси с воздухом из разных источников до сих пор разнятся, другое, не менее распространенное значение – 4% (об.) для нижнего предела и 75% (об.) для верхнего предела.

Глава четвертая
Физико-химические процессы в энергетическом устройстве

Физико-химические процессы, участвующие в работе плазменно-химического энергетического устройства и включенные в энергетический баланс установки, следующие.

1. Процесс СВЧ термолиза воды в тонкой пленке 2H2O2H2 + O2, ЭХП (энтальпия химического процесса) = 241,82 КДж/моль * R=2 (далее учитывается снижение энтальпии и, соответственно, энергорасхода, так как есть изменение энергии химических связей воды в процессе взаимодействия плазмы с водяной пленкой, см. 2, 4), процесс эндотермический затратный.

2. Процесс горения водорода в кислороде 2H2 + O22H2O, ЭХП = 241,82 КДж/моль, реакция экзотермическая.

3. Процесс взаимодействия электронной плазмы с водяной пленкой Н2O + e – каталитический процесс ослабления внутримолекулярных связей. В данном процессе электронная плазма катализатор-восстановитель взаимодействует с водородом воды, так что энергия внутримолекулярных связей в целом уменьшается.

3.1. Взаимодействие электронной плазмы с водородными связями воды Н2О…Н + e – каталитический процесс, так как атом водорода может образовывать связи с несколькими атомами, и одна из связей невалентная, то есть водородная, вода образует связи с плазменной пленкой, в данном процессе плазма – акцептор протона воды, и далее происходит уменьшение плотности водородных связей в водяной пленке, процесс экзотермический, вектор процесса направлен к плазменному восстановлению водорода, находящегося в молекуле воды, до Н2.

Физико-химические процессы относительно варианта формирования тонкой пленки жидкости, применяя динамики движущихся, вращаемых объектов, поверхностей. Рассмотрим данные процессы более подробно. Первый процесс – термолиз воды (примеры процессов термолиза см. лит. 4), тонкой пленки жидкости, параметры объекта: толщина и движение пленки в пространстве-времени, массообмен – соответствуют необходимым критериям, так как мы управляем динамикой вращения поверхности твердого тела.

Управляющие параметры, позволяющие иметь пленку жидкости необходимой толщины, скорость вращения вала привода двигателя, соответственно, рабочего тела эмиттера, его поверхности и параметр массообмена, объем воды в единицу времени, подающейся, применяя штуцер, на вращаемую поверхность.

Термолиз водяной пленки, катализируемой холодной плазмой, равномерно распределенной по поверхности эмиттера, осуществляется следующим образом. Так как молекула воды, состоящая из более электроотрицательного атома кислорода и двух атомов водорода, – электрический диполь, первое, происходит ориентация молекул в пленке относительно равномерно распределенного по поверхности эмиттера электрического заряда плазмы, далее имеет место взаимодействие электронного газа с химическими связями воды, внутримолекулярными и водородными.

Воздействие плазмы на молекулы жидкости соответствует взаимодействию щелочных металлов, электронных облаков атомов с водой, то есть до взаимодействия ионов щелочного металла с жидкостью.

Более электроотрицательная часть молекулы воды – кислород – взаимодействует с плазмой, притягивает электроны, заряд атома в молекуле компенсируется свободными электронами плазмы, и, соответственно, внутримолекулярные связи ослабевают, так что трата энергии на СВЧ термолиз (пример СВЧ термолиза воды см. лит. 9), осуществляемый воздействием внешнего источника электромагнитного поля на химические связи жидкости, меньше по сравнению с расходом энергии на термолиз пленки, не катализируемый плазмой. Второе: снижается температура лизиса воды, и, соответственно, термическая нагрузка на эмиттер уменьшается. Далее газовая смесь, образовавшаяся в результате разложения воды, состоящая из водорода, кислорода, поступает в камеру сгорания, где водород окисляется кислородом с выделением тепловой энергии.

Процесс взаимодействия электронного газа, плазмы, находящейся на поверхности туннельного эмиттера с молекулами воды, следующий.

Свободные электроны плазмы взаимодействуют с трехатомной молекулой, входя в систему со стороны атомов водорода к более электроотрицательному атому кислорода. Так как электроны свободные, то есть не связанные с ядрами атомов, то они способны конкурировать с электронами атомов водорода, не локализованными по молекулярным орбиталям к кислороду, за связь с ядром кислорода.

Таким образом, процесс трехступенчатый: ориентация диполя молекулы к заряду, продвижение ко входу в электромагнитную систему молекулы со стороны водорода и конкуренция свободных электронов за связь, так что энергия связей уменьшается и возможен процесс отделения, восстановления водорода свободным электроном плазмы и образование свободного атома водорода и гидроксильной группы, то есть под действием свободных электронов плазмы вода в прилегающем к плазменному слою, в зависимости от энергии туннелировавших электронов, изменяет свой характер на щелочной.

Процесс в целом рассмотрим элементарный, относительно возможности проведения в нем процесса туннельной эмиссии, объем кристалла арсенида галлия. Физико-химическая структура кристалла такова, что арсенид галлия содержит в ней энергетические уровни, электронные оболочки, общие для кристалла в целом, то есть надмолекулярные электронные формации. Далее именно от данных общих для всего кристалла электронных уровней происходит такой отрыв электрона, что энергии на данный процесс затрачивается существенно меньше, чем на какой-либо другой, то есть выход и образование свободных электронов в процессе низкотратного преодоления квантовыми частицами энергетического барьера.

Энергетическая трата существенно меньше, так как система электронных уровней, энергетические оболочки кристалла, обладают параметрами, отличающимися от соответствующих характеристик молекулярных орбиталей.

Дополнительная трата на данный процесс – это энерготрата на усиление и стимулирование выхода электронов, туннельной эмиссии на поверхность внешним электромагнитным полем, то есть энерготрата, часть суммарной траты на работу антенны излучения СВЧ. Электромагнитное поле данного устройства воздействует на поверхность эмиттера плазмы и на рассмотренный ниже процесс.

Далее на поверхность кристалла эмиттера, покрытого пленкой плазмы, то есть на поверхности твердого тела есть распределенный отрицательный заряд, поступает жидкость, распределяемая по ней центробежными и молекулярными силами в виде тонкой пленки.

Необходимая для эффективного, то есть энергетически выгодного процесса лизиса расчетная толщина пленки жидкости определяется, первое, исходя из физическо-химических свойств полупроводника. Максимального объема плазмы, генерируемого кристаллом минимально возможных размеров, определенный объем, заряд в кулонах, способен катализировать определенное количество находящейся в пленке жидкости. Что, в свою очередь, определяется квантовой физико-химической структурой кристалла полупроводника и такой толщиной слоя воды, что жидкость реагирует полностью с объемом выделяющейся плазмы так, что химические связи воды ослабевают настолько, что вероятно, что процесс в целом экзотермичен, то есть толщина пленки определяется экспериментально.

Источник внешнего электромагнитного поля, антенна излучения, воздействует на пленку воды заданной толщины, и в процессе взаимодействия поля с ослабленными плазмой внутримолекулярными и водородными связями химические связи молекул в пленке разрываются, вода разлагается на составляющие – водород и воду. Вырожденная плазма, электронный газ, распределенный по поверхности экрана-эмиттера, есть катализатор, в процессах на уровне химических реакций не расходуется, и исходя из этого подпитка необходима для возмещения уноса плазмы газами.

 

Далее, для исключения из процесса энергетических потерь частота подпитки по расположению максимумов противоположна частоте подачи внешнего переменного импульса от СВЧ-источника, и подпитка в общей цепи взаимосвязанных событий в устройстве в пространстве-времени есть первый акт. Делаем следующий вывод: восстановителем связей воды в данном энергетическом устройстве является полупроводник, в кристалле арсенида галлия есть энергетические уровни, с которых электроны способны туннелировать с выходом на поверхность, процесс туннельной эмиссии и образования плазмы на поверхности эмиттера.

Процесс возможно стимулировать внешним электромагнитным полем, уменьшая ширину энергетического барьера, подпитку расхода электронов осуществляем, подведя к полупроводнику с внешней стороны, подсоединив к контактам электрическую цепь, находящуюся под переменным электрическим током, противоположным по частотным характеристикам полю антенны излучения максимально для уменьшения нецелевого расхода энергии. Так как арсенид галлия в процессе не расходуется, определяем, что процесс каталитический, плазмохимический каталитический процесс туннельной эмиссией электронов полупроводника на поверхность и далее в тонкую пленку жидкости.

В энергетический баланс устройства включены следующие параметры: для расчета необходимо знать энтальпию реакции лизиса воды, для того чтобы рассчитать количество энергии, затрачиваемой на работу антенны излучения СВЧ, электромагнитного поля, расходуемой на процесс разложения единицы массы воды в пленке на поверхности в единицу времени, далее необходимо рассчитать энергетический выход от камеры сгорания, количество энергии, выделяющейся в процессе горения газовой смеси, состоящей из водорода и кислорода, в расчете учитывается энтальпия химической реакции горения водорода в кислороде.

В расчете массового баланса жидкости скользящей пленки по поверхности воды необходимо учесть зависимости толщины пленки жидкости от скорости и объема подачи воды на эмиттер и скорости вращения вала привода, сцепленного механически с приемной антенной СВЧ поля, далее учитываются вязкость воды и смачиваемость поверхности экрана приемной антенны. Учитывая данные параметры, мы имеем заданную толщину термолизуемой пленки и метод управления жидкостью применяем, управляющие (см. выше) параметры, независимо от положения в пространстве работу устройства.

Далее, рассчитаем зависимость параметров выходящего электромагнитного поля от количества подаваемой на антенну излучения электрической энергии и находим зависимость потенциала электрического поля равномерно распределенной по поверхности эмиттера плазмы, измеряемой в кулонах, от напряженности поля антенны излучения на поверхности антенны приема и расстояния от антенны излучения до поверхности туннельного эмиттера.

Поставим эксперимент: найдем зависимость температуры лизиса воды электромагнитным полем от потенциала холодной электронной плазмы на поверхности эмиттера и управляемой толщины пленки жидкости. Вычислив, исходя из полученных данных, количество энергии, подаваемой на приемную антенну от антенны излучения, снижающее температуру лизиса, и вероятностный результат, что данная величина меньше выхода энергии от реакции окисления в камере сгорания.

Убедившись в данном, мы сможем утверждать, что применение квантовой структуры энергетических уровней кристалла полупроводников, в том числе арсенида галлия, соответственно процесса туннельной эмиссии электронного газа на твердую поверхность и взаимодействия электронов холодной плазмы с тонкой пленкой, скользящей по поверхности эмиттера, то есть катализ холодной плазмой лизиса жидкости в пленке дает нам экзотермический выход от процесса термолизиса воды с последующим горением компонентов. То есть применение (см. выше) физических свойств квантового уровня материальных объектов и взаимодействие данных свойств с химическим уровнем материи позволяет наряду с физическими свойствами ядер атомов, реакции термоядерного синтеза, дает нам метод применения низкомолекулярных неорганических соединений, воды, в качестве источника энергии, топлива.

Данная величина, а именно рассмотренная энергетическая трата, в расчете есть в сумме с необходимой затратой электрической энергии на подпитку баланса электронного газа в системе, так как плазма диффундирует и далее уносится газами, не возобновляется необходимо доставить электроны (лептоны) в систему, применяя контакт находящегося под током проводника с полупроводником эмиттера, количество затрачиваемой энергии на подпитку плазмы находится экспериментально.

Далее, необходимо учитывать радиоотражающие свойства слоя полупроводника и массива антенны приема электромагнитного поля, численные значения данных характеристик. Экспериментально определяется толщина полупроводникового покрытия приемной антенны эмиттера (примеры формирования полупроводниковых пленок заданной толщины см. лит. 16).

Глава пятая
Выбор конструкционных материалов и геометрической формы частей аппарата и энергетического устройства в целом

Выбор материала антенны приема электромагнитного поля обусловлен потерями электронов в процессе перехода, в том числе и туннельного, квантовых частиц из массива полупроводника в проводник. Исходя из этого, наносить полупроводниковое покрытие на проводник энергетически невыгодно, и вероятно, что потери энергии превысят эффект применения туннельной эмиссии электронов, поэтому применяем материал, способный отражать электромагнитное поле. Причем сопротивление массива материала, контактирующего со слоем полупроводника, должно настолько превышать сопротивление проводника, что величина потерь минимальна и эффект туннельной эмиссии энергетически выгоден.

Данный материал – диэлектрик. То есть антенна приема электромагнитного поля, массив диэлектрика, форма массива – параболоид вращения, обусловлена методом управления массообмена воды и толщиной пленки, вращением вокруг оси симметрии поверхности вогнутого тела параболоида, далее, применяя данную форму, равномерно распределяем поток лучистой энергии по поверхности полупроводникового покрытия.

Геометрическая форма космического технического объекта в целом c точки зрения энергетической и химической технологии – плоская башня, c других точек зрения – эллипсоид, диск, обусловлена применением в данной конструкции центробежных сил. Плоская башня состоит из двух эллиптических днищ, в которых в верхней, более суженной, части есть отверстие правильной формы, геометрически – окружность с центром симметрии, расположенным на оси симметрии днища, к эллиптическому днищу либо приварена, либо закреплена на крепежных деталях полусфера, камера синтеза топливного газа. Далее выше относительно одного из днищ располагается цилиндрическая часть башни, обечайка, соединенная крепежными деталями либо приваренная.

В двух полусферах расположены камеры синтеза газа, далее в эллиптических днищах, секторах эллипсоида – камеры сгорания, в цилиндрической части – источник электромагнитного поля и генератор электрической энергии с лопастной турбиной. Давление расширяющегося газа принимают лопатки турбины, в подвеске турбины применены СП, исходя из этого потери на трение минимальны, выхлоп энергетического устройства – водяной пар, применяется далее в экосистеме космического корабля либо научно-исследовательского поселения.

Конструкционный материал полусферических камер синтеза, эллиптических днищ, обечайки, корпуса аппарата в целом должен обладать следующими свойствами. Первое и наиболее важное, так как данное устройство относится к аппаратам водородной энергетики (космической водородной энергетики) и в камерах синтеза, в камере сгорания у нас есть газ, водород в достаточно высокой концентрации, конструкционный материал должен быть устойчив к действию водородной коррозии.

Водородная коррозия – частный случай газовой коррозии, она обусловлена активной диффузией газа в толщу металла, изменяющей свойства конструкционного материала и приводящей к его разрушению, а также малым размером атомов газа.

Конструкционным материалом, подходящим по устойчивости к водородной коррозии, сохраняющим необходимые механические, то есть прочностные свойства в заданные параметрами синтеза водорода и его горения, должна быть легированная сталь. Распространенные в технике и технологии сплавы цветных металлов, к примеру дюралюминий, исключаются, так как не вписываются в температурные параметры горения водорода. Исключение – полусферическая камера синтеза, вероятно, так как для утверждения данного требуется постановка опыта, температура в камере синтеза по сравнению с камерой сгорания ниже, соответственно, применив дюралюминий либо другой сплав, мы снизим массу устройства.

Глава шестая
Биохимический катализ

Наиболее распространены на планетарном уровне относительно синтетических, активны и достаточно эффективны катализаторы лизиса эндотермичных к атмосферному кислороду неорганических соединений, участвующие в процессе биогеоценоза, биосферные катализаторы. Масса биосферы относительно техносферы выше на несколько порядков, биохимически активные формы, живые молекулы данных соединений существуют в биосфере миллиарды лет, соответственно, энергетический вклад, то есть количество выработанной биосферой энергии с участием данных молекулярных форм, намного выше общего количества энергии, выработанной всей энергосистемой человечества за всю ее историю.

Таким образом, метод выработки энергии из эндотермичных к атмосферному кислороду низкомолекулярных неорганических соединений эффективен и работает в биосфере в течение миллиардов лет. Соответственно, одним из вариантов решения энергетического кризиса, обусловленного использованием в качестве топлива высокомолекулярных органических соединений, содержащихся в нефти, газе и каменном угле – невозобновляемых источниках энергии, является использование данных катализаторов и более каталитически активных форм, созданных на основе природных катализаторов в техносфере, то есть в устройствах и установках выработки энергии, в контексте данной работы устройств первого порядка в концепции субстратционной границы техносферы.

Рассмотрим данный катализатор. Это часть природного фермента хлорофилла, содержащегося в организмах растений, от древнейших сине-зеленых водорослей до высших растений, то есть физико-химическая и биохимическая система, содержащая в своем составе магний, металлопорфирин. В процессе каталитического разложения воды с участием данного химического соединения энергии, по сравнению с процессами прямого разложения, затрачивается существенно меньше, и потому применение данного процесса в устройствах первого порядка, то есть формирование каталитического покрытия, содержащего металлопорфирин, эффективно и выход энергии от данных устройств положительный.

Синтетические катализаторы лизиса воды

Кроме имеющихся в биосфере катализаторов разложения воды на водород и кислород, существуют синтетические соединения, и применение данных физико-химических систем в ЭУ эффективно. Рассмотрим данные химические соединения. Их применение в качестве прямого катализатора разложения воды на водород и кислород неэффективно, так как с водой данные химические соединения не взаимодействуют, но они настолько хорошо растворяют кислород, то есть молекулы кислорода образуют неустойчивые связи каталитического характера, что возможно применение соединения в качестве вторичного катализатора рабочего тела.

Подробнее в основных частях данной работы мы рассматривали процесс взаимодействия тонкой водяной пленки с холодной плазмой, вырабатываемой воздействием на экран-эмиттер электромагнитного поля. Ведущим процессом в данной установке является процесс туннельной эмиссии электронного газа на твердую поверхность полупроводника арсенида-галлия.

В данном процессе молекулы воды так взаимодействуют с туннелирующим на поверхность электронным газом, что химические связи ослабевают, плазма, рассматривая дипольную структуру молекулы воды, взаимодействует с водородом.

Поэтому применяем эмульсию на основе перфторана и воды, и, подавая через штуцер данную смесь на экран-эмиттер, мы имеем следующее. Молекулы воды находятся под воздействием трех сил, водород взаимодействует с плазмой, процесс восстановления, кислород образует слабые связи каталитического характера с перфтораном. Соответственно, в ЭУ мы применяем. H2O + перфторан = ракетное топливо.