Kostenlos

Schöpfungen der Ingenieurtechnik der Neuzeit

Text
0
Kritiken
iOSAndroidWindows Phone
Wohin soll der Link zur App geschickt werden?
Schließen Sie dieses Fenster erst, wenn Sie den Code auf Ihrem Mobilgerät eingegeben haben
Erneut versuchenLink gesendet

Auf Wunsch des Urheberrechtsinhabers steht dieses Buch nicht als Datei zum Download zur Verfügung.

Sie können es jedoch in unseren mobilen Anwendungen (auch ohne Verbindung zum Internet) und online auf der LitRes-Website lesen.

Als gelesen kennzeichnen
Schriftart:Kleiner AaGrößer Aa

Große Leistungen ermöglicht das Eisen insbesondere im Hochbau bei der Errichtung der »Wolkenkratzer« der amerikanischen Großstädte. Noch im Jahre 1880 begnügte man sich in den Vereinigten Staaten mit 5–6 Stockwerken, bis man durch das Steigen der Bodenpreise gezwungen wurde, »in den offenen Raum zu flüchten«.

In der baulichen Ausbildung der Wolkenkratzer sind zwei Zeitabschnitte zu unterscheiden, deren erster bis zum Ende der achtziger Jahre des vorigen Jahrhunderts, deren zweiter bis zur Gegenwart reicht. In dem ersten Zeitabschnitt übertrug man die für ein gewöhnliches Steingebäude üblichen Baugrundsätze auf Gebäude von doppelter und dreifacher Höhe. Hierbei war das Mauerwerk der hauptsächlich tragende Teil, während das Eisen nur zur gegenseitigen Versteifung der Wände, der Balkenlagen und des Daches benutzt wurde. Bald aber stellte sich heraus, daß diese Bauweise für die Errichtung höherer Gebäude nicht benutzbar war, weil in den unteren Geschossen die Mauerstärke ungebührlich vergrößert werden mußte, infolgedessen der verfügbare Bebauungsraum in unerwünschtem Maße beengt wurde. Die Eigenlast der Gebäude und damit deren Druck auf die Fundamente wurde ungemein groß. Hierdurch gelangte man auf eine andere Bauweise, die sog. »Skelett- und Furnierkonstruktion« (skeleton and veneer construction). Die bisher benutzten schweren Mauerwerksmassen sind hierbei durch aus Eisen hergestellte Gerippe ersetzt, die die sämtlichen Belastungen aufnehmen und auf das Fundament übertragen. Die Verteilung der inneren Räume läßt sich leicht in das Gerippe einbauen, während die feuerfesten Verkleidungen in Stein, Ziegel, Terrakotta u. dgl. gleichsam wie ein Furnier das ganze innere Eisengerippe umgeben. Diese Gerippebauart hat gegenüber der früheren Bauweise noch den großen Vorzug des raschen Aufbaus. Bauten, die früher ein Jahr und mehr beanspruchten, werden jetzt in 5–6 Monaten errichtet. Die mit dieser Bauweise zu erreichende größte Gebäudehöhe schätzt man auf 600 m.

Der höchste Wolkenkratzer ist das in dargestellte Woolworth-Gebäude in New York, das mit einem Kostenaufwand von 80 Mill. Mk. errichtet wurde. Es liegt am Broadway mit einer Front von 47 m und auf dem Park Place und Barklay Street mit einer Fassadenlänge von je 60 m. Der Turm erhebt sich vom Broadway mit 55 Stockwerken und besitzt 26 m im Quadrat. Der übrige Teil des Gebäudes hat 29 Stockwerke. Die Höhe des Turms über dem Straßenpflaster beträgt 221 m. Da auch unter der Straße noch Geschosse von 37,50 m Tiefe liegen, so ergibt sich eine Gesamthöhe vom Fundament bis zur Spitze des Turms von 258,50 m. Wenn sämtliche Räume vermietet sind, faßt der Bau 10 000 Personen. Der ausführende Architekt Cass Gilbert hat es verstanden, durch Anwendung des gotischen Stils und durch eigenartige Farbenzusammenstellung des Mauerwerks einen durchaus künstlerisch und harmonisch wirkenden Eindruck zu erwecken. Die von der Otis-Gesellschaft gelieferten, den Innenverkehr vermittelnden gewaltigen 26 elektrischen Fahrstühle besitzen eine Geschwindigkeit von 3,5 m in der Sekunde.

Angesichts der Wohnungsnot ist man auch in Deutschland dem Bau von Wolkenkratzern nähergetreten, wegen der hohen Eisenpreise aber bisher ohne tatsächlichen Erfolg. Da ist von Interesse, daß der Bau von Häusern bis zu 22 Stockwerken möglich ist ohne Anwendung von Eisen. Vorbedingung für derartige hohe Häuser ist, daß sie mit rundem oder elliptischem Grundriß aufgeführt werden und hierdurch befähigt sind, dem Winddruck besser zu widerstehen als Gebäude mit flachen Wänden und rechteckigem Grundriß.

In der neuesten Zeit nimmt der Eisenbeton in schnell steigendem Maße an Bedeutung als Baustoff zu. Derselbe besteht aus einer innigen Vereinigung von Eisen und Beton und verdankt seine hohe Festigkeit dem Umstande, daß jeder der beiden Baustoffe, aus denen er zusammengesetzt ist, diejenige Beanspruchung aufnimmt, wofür er besonders geeignet ist. Das Eisen nimmt die Zugspannungen, der Beton nimmt die Druckbeanspruchungen auf. Der Eisenbeton, der sich durch unbedingte Feuersicherheit, schnelle und billige Ausführbarkeit, Dauerhaftigkeit und leichtes Anpassungsvermögen auszeichnet, wird in der Weise hergestellt, daß ein Netzwerk von Eisenstäben, das in seiner Gestalt dem zu schaffenden Bauwerk entspricht, von einer Schalung umgeben wird und in dieser Schalung mit flüssigem Beton umgossen wird, der bei seiner Erstarrung eine unlösbare Verbindung mit dem eisernen Netzwerk eingeht. Die weitestgehende Verwendung findet der Eisenbeton zunächst im Hoch- und Brückenbau, sodann im Tiefbau und im Wasserbau. Die weitest gespannte Eisenbetonbrücke überschreitet den Mississippi bei Minneapolis mit einem Bogen von 121,92 m Weite und 26,82 m Pfeilhöhe. Jenseits des Ozeans verwendet man den Eisenbeton auch als Baustoff für Wolkenkratzer. Neuerdings hat der Eisenbeton eine zunehmende Bedeutung als Schiffbaustoff gewonnen, und zwar sowohl für Binnen-, wie für Seeschiffe. Als Vorzüge des Eisenbetonschiffbaus sind außer den bereits genannten zu nennen: Wasserdichtheit, elastisches Verhalten gegen Stoß, kurze Bauzeit, Möglichkeit der Reihenherstellung von Schiffen gleicher Bauart, geringe Reibung im Wasser, hohe Widerstandskraft gegen Seewasser, geringer Ansatz von Pflanzen und Muscheln am Schiffskörper. Anfangs wurde die Einführung des Eisenbetons in den Schiffbau durch den Umstand stark erschwert, daß sich das Eigengewicht der Schiffe im Verhältnis zu deren Ladefähigkeit sehr ungünstig gestaltete. Dieses Mißverhältnis scheint aber durch Schaffung eines sehr leichten Betons beseitigt zu sein. Schließlich werden jetzt auch Eisenbahnwagen in steigendem Maße aus Eisenbeton hergestellt. Der aus Eisenbeton hergestellte Wagen hat gegenüber dem eisernen Wagen den großen, bei den jetzigen hohen Eisenpreisen besonders wichtigen Vorzug, daß er erheblich weniger Eisen in Anspruch nimmt; so stehen beispielsweise den 2200 kg Profileisen des eisernen offenen 20 t-Güterwagens nur 700 kg Bandeisen und 200 kg Flach- und Quadrateisen des Eisenbetonwagens gegenüber.

II. Tunnelbauten

Von jeher hat der Riesenwall der Alpen den Wagemut der durch ihn voneinander getrennten Völkerschaften erregt.

Die ersten großen über die Alpen führenden Verkehrsstraßen stammen aus dem 18. Jahrhundert: Kaiserin Maria Theresia erbaute 1772 die über den Brenner führende »Kaiserstraße«; Napoleon I. schuf die Heerstraßen über den Mont Cenis und über den Simplon. Noch andre die Alpen überschreitende Straßen folgten, und als die Eisenbahnen in die Erscheinung traten, da gesellten sich zu diesen die das Gebirgsmassiv durchbohrenden Tunnel, die höchsten Glanzleistungen neuzeitlicher Ingenieurtechnik darstellend. Der erste größere Tunnelbau war der 2½ km lange Hauensteintunnel bei Olten in der Schweiz. Derselbe hat nebenbei eine traurige Berühmtheit dadurch erlangt, daß während seines Baues am 28. Mai 1857 70 Arbeiter durch den Einsturz eines Schachtes den Tod fanden. Die hier gesammelten Erfahrungen ermutigten im Jahre 1859 zum Bau des 12 km langen Mont Cenistunnels, der nach 11jähriger Bauzeit zum Durchschlag und im 12. Jahre zur Vollendung gebracht wurde. Der tägliche Vortrieb betrug, da man allein über Handbohrung verfügte, auf jeder Seite nur 1,5 m täglich. Der im Jahre 1872 begonnene, am 29. Februar 1880 zum Durchschlag gebrachte Gotthardtunnel hat eine Länge von 14,984 km; hier erzielte man, da inzwischen die Tunnelbohrmaschine ins Leben gerufen war, einen täglichen Fortschritt von 2,11 m auf jeder Seite.

Der nächste in Angriff genommene große Alpentunnel war der den Simplon durchschneidende. Er ist ein unmittelbarer und scharfer Nebenbuhler seiner beiden Vorgänger, denn ihm liegt, gleich jenen, dieselbe große Aufgabe innerhalb des internationalen Verkehrs zwischen dem Norden und Süden Europas ob. Diese Aufgabe zwang schon bei der Festlegung der beiden Tunnelmündungen zu wichtigen Erwägungen. Ein Tunnel ist um so billiger und schneller herzustellen, je kürzer er ist, oder, mit anderen Worten, in je größerer Höhe er das Gebirge durchbohrt. Hiermit wachsen aber die Schwierigkeiten, die sich der Beförderung der Züge entgegenstellen. Diese müssen größere und länger ausgedehnte Steigungen hinaufbefördert werden, und die im Freien liegenden Eisenbahnstrecken können gegen Schneeverwehungen und sonstige Naturereignisse nur unter erheblichem Aufwand von Personal- und Unterhaltungskosten geschützt werden. Demnach hat man dem Simplontunnel, um ihn zu einem stets betriebsbereiten Mittel des internationalen Verkehrs zu machen, eine möglichst tiefe Lage gegeben und ihn als einen sog. Basistunnel, der den Gebirgsstock an seiner Wurzel durchfährt, ausgeführt. Der Simplontunnel liegt 450 m tiefer als der Gotthardtunnel. Trotzdem aber konnte man ihn derart in das Gelände einfügen, daß er nur 5 km länger ist als der Gotthardtunnel, nämlich 19,803 km. Die nördlich bei Brig gelegene Tunnelmündung liegt 686 m, die südliche, bei Iselle liegt 634 m über dem Meere.

Wie bei allen großen Gebirgstunneln stellte die trigonometrische Festlegung der Tunnelachse die höchsten Anforderungen an deren Leiter, Professor Rosenmund-Zürich, wie an dessen Gehilfen und an die zur Anwendung gelangenden Meßgeräte. Die neuzeitlichen Tunnel werden von beiden Seiten her gleichzeitig in das Gebirge vorgetrieben, und es muß daher Vorsorge getroffen werden, daß die einander entgegenstrebenden Arbeiterscharen sich im Innern des Berges treffen und nicht aneinander vorbeigehen. Zu diesem Zwecke wird der betreffende Gebirgsabschnitt mit einem sog. Triangulationsnetz überzogen. Die Ecken der dieses Triangulationsnetz bildenden Dreiecke liegen auf Bergspitzen, und es werden nun diejenigen Winkel, unter denen diese mit sichtbaren Signalen ausgestatteten Bergspitzen zueinander stehen, gemessen und festgestellt. Hat man den Gebirgsstock auf diese Weise gleichsam in ein Netz von Dreiecken eingesponnen, so ist nur noch erforderlich, die Winkel zwischen den Tunnelmundlöchern und den von diesen aus sichtbaren Bergspitzen zu messen. Nunmehr kann die Mittelachse des Tunnels über das Gebirge hinweg durch Signalstangen festgelegt werden. Um sicher zu sein, daß sich die Arbeiten im Innern des Berges genau unterhalb dieser über das Gebirge hin festgelegten Linie bewegen, wird letztere über beide Tunnelmündungen hinaus verlängert, und in dieser Verlängerung der Tunnelachse werden Beobachtungsposten aufgestellt, von denen aus man mittels scharfer Fernrohre die im Berge fortschreitende Tunnelöffnung und die über das Gebirge festgelegte Tunnelachse beobachten und gegenseitig verfolgen kann. Um dies zu ermöglichen, werden in der Mittellinie des fortschreitenden Tunnels scharf leuchtende Lichter angebracht. Stellt man ein Fernrohr auf die über das Gebirge gelegte Achse ein und dreht man dasselbe alsdann in senkrechter Richtung so tief abwärts, daß man in das Innere des Tunnels hineinblickt, so müssen die hier angebrachten Lichter in derselben senkrechten Ebene liegend erscheinen wie jene Achse. Ist dies nicht der Fall, so muß der Vortrieb des Tunnels entsprechend geändert werden. Die Arbeiten des Professor Rosenmund wurden stark durch Luftspiegelungen gestört, die von Temperaturunterschieden der Tunnelluft herrührten. Sie gelangten aber zu einer so genauen Durchführung, daß die beiden Tunnelachsen, als sie am 25. Februar 1905 sich begegneten, nur um 20,2 cm in der Wagerechten und um 8,7 cm in der Senkrechten voneinander abwichen.

 

Bei dem Gotthardtunnel hatte man sich mit derjenigen Lüftung begnügt, die durch die aus den Gesteinsbohrmaschinen austretende Abluft bewirkt wurde. Diese genügte jedoch bei weitem nicht, und die vor Ort herrschende, durch die Sprengstoffe, die Lampen und die menschlichen Ausdünstungen hervorgerufene Luftverschlechterung hatte zahlreiche Krankheits- und Todesfälle unter der Tunnelmannschaft zur Folge. Man mußte bei dem Simplontunnel nach dieser Richtung um so vorsichtiger verfahren, weil man auf außergewöhnliche Temperaturen im Innern des Gebirges gefaßt sein mußte, und weil der Tunnel der längste bisher in Angriff genommene war. Man nahm die für 500 Arbeiter erforderliche Luftmenge zu 1500 cbm in der Minute an und gelangte zu einem überaus eigenartigen und wirksamen Hilfsmittel, um diese große Menge tatsächlich an Ort und Stelle zu schaffen. Dieses Hilfsmittel bestand in einem Parallelstollen, den man in gleicher Höhenlage neben dem eigentlichen Tunnel vortrieb und den man als Luftzuführungsrohr benutzte. Diese beiden Stollen wurden in Abständen von je 100 m durch Querschläge miteinander verbunden. Von diesen Querschlägen wurde jeweilig nur der am nächsten vor Ort liegende, also der letzte, offen gehalten, während alle übrigen Querschläge geschlossen wurden. Mittels gewaltiger Fliehkraftgebläse wurde in den einen Stollen Luft eingetrieben; diese trat durch den vordersten Querschlag in den anderen Stollen über, um dann durch diesen und dessen Mundloch wieder ins Freie zu treten. Unsere läßt die Mundlöcher der beiden Stollen deutlich erkennen. Auf diese Weise strich also durch den Tunnel andauernd ein für die erforderliche Lufterneuerung und Luftkühlung hinreichender Luftstrom hindurch. Diejenige kurze Strecke, welche zwischen dem letzten Querschlag und der vordersten Arbeitsstelle lag, wurde durch besondere Leitungen mit Frischluft versorgt. Der Abstand der beiden Tunnelachsen beträgt 17 m. Einer dieser Tunnel wurde sofort auf den erforderlichen Querschnitt ausgearbeitet. Der zweite Tunnel wird erst jetzt zu einem Volltunnel erweitert.

Entsprechend den großen im Innern des Berges auszuführenden Arbeiten waren die vor dem Tunnel zu errichtenden Werk- und Kraftanlagen bemessen. Die hierauf verwandten Kosten belaufen sich auf 4 Mill. Fr. auf jeder Tunnelseite. Auf der Nordseite konnte man der Rhone eine dem Kraftbedarf von 2000 P.S. genügende Wassermenge entnehmen; auf der Südseite stellte die Diveria die gleiche Menge nebst Gefälle zur Verfügung. Bevor die Wasserkraftanlagen in Benutzung genommen werden konnten, behalf man sich mit Halblokomobilen. Die im Innern des Tunnels verkehrenden Lokomotiven wurden mit Preßluft von 80 Atm. betrieben. Elektrische Beleuchtung kam nur außerhalb des Tunnels zur Anwendung. Die Werkstätten hatten einen derartigen Umfang und waren außerdem mit den verschiedenartigsten Einrichtungen in einer Weise ausgestattet, daß weitestgehende Ausbesserungsarbeiten und Neuherstellungen in ihnen ausgeführt werden konnten. Besonders hervorzuheben sind die großen auf das vorzüglichste eingerichteten Bade- und Waschhäuser für die Arbeiter und Ingenieure, die Krankenhäuser und die Arbeiterwohnungen. Der Gesamtverbrauch an Sprengstoffen belief sich auf 2000 t oder 200 Eisenbahnwagenladungen.

Während des Baues stellten sich unvorhergesehene, nur mit äußerstem Aufwande besonderer neuer Maßnahmen zu überwindende Schwierigkeiten ein. Man hatte dieselben um so weniger erwartet, als die geologischen Verhältnisse sich im Laufe des Vortriebs des Tunnels nicht im Einklang mit den Gutachten der Sachverständigen ergaben, die eine überaus günstige Gesteinslagerung als wahrscheinlich vorhanden angegeben hatten. Unsre gibt in ihrem oberen Teile das geologische Profil wieder, wie man es erwartet hatte, und in ihrem unteren Teile, wie es auf Grund der gemachten Erfahrungen sich ergab. Die auftretenden Schwierigkeiten waren mehrfacher Art. In der mittleren 7 km langen Strecke hatte man trockenen, steil aufgerichteten Gneis erwartet. Statt dessen traf man auf wasserführende, flach und selbst wagerecht verlaufende Schichten, wodurch die Bohrarbeit und die Ausmauerung des Tunnels auf das äußerste erschwert wurden. Auf der nördlichen Seite, wo man auf eine Gesteinswärme von höchstens 42 °C gerechnet hatte, stieg diese auf die gewaltige Höhe von 56 °C. Auf der Südseite schlug man kalte Quellen an, die unter hohem Druck bis zu 1200 l Wasser in der Sekunde in den Stollen ergossen. Um die Schwierigkeiten zum Übermaß zu steigern, schloß sich an diese wasserführende Strecke eine Druckstelle an mit derartig brüchigem Gestein, daß dessen Druck selbst die stärksten Holzrüstungen nicht zu widerstehen vermochten. Hier mußte ein besondrer 42 m langer Eisenbetonstollen geschaffen werden, dessen Vortrieb, Ausweitung und Ausmauerung allein etwa 1½ Jahre in Anspruch nahm, mit einem Kostenaufwand von rund 20 000 Mk. für das laufende Meter. Schließlich traten, als die Vortriebsarbeiten sich von Norden und Süden her bis auf etwa 2 km genähert hatten, heiße Quellen von 45 °C, ja bis zu 50 °C auf, die an die Arbeiter die übermenschlichsten Anforderungen stellten. Am 25. Februar 1905 erfolgte der Durchschlag. Hierbei wichen, wie bereits erwähnt wurde, die Tunnelachsen nur 202 mm in der Wagerechten und 87 mm in der Höhe ab, gewiß ein glänzender Beweis für die Sorgfalt, mit der die Vorarbeiten ausgeführt waren. Die Zahl der Todesopfer, die der Bau gefordert hatte, betrug auf der Nordseite 22, auf der Südseite 20. Am 25. Januar 1906 durchfuhr der erste Zug den Tunnel; am 1. Juni 1906 wurde dieser dem Verkehr übergeben. Die Kosten beliefen sich einschließlich der Herstellung und teilweisen Ausmauerung des Parallelstollens sowie Beschotterung und Gleisverlegung im Haupttunnel auf 58,2 Mill. Fr.; hiervon entfielen 8,4 Mill. auf die Werkstattsanlagen vor den Tunnelmündungen in Brig und Iselle.

Der auf der Simplonbahn sich vollziehende Verkehr hat eine große Förderung durch den Bau der Lötschbergbahn erfahren, die am 1. Juli 1913 dem Betrieb übergeben wurde. Diese Bahn hat insgesamt nur eine Länge von 74 km. Auf dieser kurzen Strecke aber häuften sich die zu überwindenden Schwierigkeiten in ganz außergewöhnlichem Maße. Unter den zahlreichen Bauten dieser Bahn steht an erster Stelle der Lötschbergtunnel mit einer Länge von 14,536 km. Derselbe verläuft nicht nach einer geraden Linie, sondern weist beiderseits erhebliche Kurven auf. Während des Baues sah man sich sogar genötigt, die Achse des Tunnels zu verlegen. Es war dies eine Folge des Umstandes, daß am 24. Juli 1908 man unerwarteterweise das Gasteinertal anbohrte, was das Hereinbrechen großer Schlamm- und Schuttmassen zur Folge hatte, in denen 25 Arbeiter den Tod fanden. Die nunmehr dem Tunnel gegebene neue Richtung umgeht das Gasteinertal, hat aber eine Verlängerung des Tunnels um nicht weniger als 800 m zur Folge. Der erzielte tägliche Vortrieb betrug auf der Nordseite gegen 9, auf der Südseite etwa 5 m.

Dem Tunnelbau werden in nächster Zeit voraussichtlich eine Anzahl besonders schwieriger Aufgaben gestellt werden. Zwar wird der in Kellermanns Roman »Der Tunnel« anschaulich geschilderte Bau des Tunnels Europa–Amerika noch lange auf sich warten lassen, aber die Untertunnelung des Ärmelkanals, der Straße von Gibraltar, der Beringstraße, des Bosporus u. a. m. rücken der Verwirklichung immer näher. Dieses erscheint um so wahrscheinlicher, als die Untertunnelung breiter Flußläufe, so der Themse bei London, der Elbe bei Hamburg, der Spree bei Berlin sowie verschiedener amerikanischer Ströme mit vollem Erfolg ausgeführt wurde.

III. Kanalbauten

Der Plan eines Durchstichs der Landenge von Panama wurde schon alsbald nach der Entdeckung Amerikas, seit dem Jahre 1524, zum Teil unter Benutzung des Nicaragua-Sees, erwogen und ist dann im Laufe der Jahrhunderte wiederholt aufgetaucht, um erst in jüngster Zeit zur Ausführung gebracht zu werden. Auch Alexander von Humboldt und Goethe haben sich mit dieser gewaltigsten Verkehrsfrage beschäftigt. Letzterer hat hierbei eine verblüffende prophetische Voraussicht entwickelt. Im Jahre 1827 äußerte er sich: »Wundern sollte es mich, wenn die Vereinigten Staaten es sich sollten entgehen lassen, ein solches Werk in ihre Hände zu bekommen. Es ist vorauszusehen, daß dieser jugendliche Staat bei seiner entschiedenen Tendenz nach Westen in 30 bis 40 Jahren auch die großen Landstrecken jenseits der Felsengebirge in Besitz genommen und bevölkert haben wird … Ich wiederhole also: Es ist für die Vereinigten Staaten durchaus unerläßlich, daß sie sich eine Durchfahrt aus dem Mexikanischen Meerbusen in den Stillen Ozean bewerkstelligen, und ich bin gewiß, daß sie es erreichen

Die Ereignisse haben Goethes Voraussicht bestätigt: die Vereinigten Staaten haben das Erbteil der Franzosen angetreten, die als die ersten sich an das große Werk herangewagt haben, ohne es der Vollendung entgegenführen zu können. Im Jahre 1879 trat zu Paris unter dem Vorsitz von Ferdinand v. Lesseps eine internationale Kommission zusammen, um von den für den Durchstich des Isthmus von Panama eingegangenen elf Plänen einen zur Ausführung auszuwählen. Unter diesen Plänen befanden sich die verschiedensten Lösungen. Mehrere schlugen einen Durchstich in der Höhe des Meeresspiegels vor, das sogenannte »Seehöhenprojekt«, wobei für den Durchschlag der Kordilleren ein Tunnel oder ein Einschnitt erforderlich wurde. Andere brachten einen Kanal in Vorschlag, der durch Schleusentreppen das Gebirge überschritt. Nach eingehenden Beratungen entschloß man sich für den Bau eines von Meer zu Meer ohne Schleusen verlaufenden Niveau- oder Seehöhen-Kanals. Der Kanal sollte eine Länge von 75 km, eine Tiefe von 8,5 m, eine Breite von 56 m in der Ebene und eine Breite von 22 m im Berglande erhalten. Das Gebirge sollte in einem 6 km langen Tunnel durchstochen werden. Die Kosten waren auf 843 Millionen Fr. veranschlagt. Die Bauzeit war vertragsmäßig auf 12, höchstens auf 18 Jahre festgesetzt. Auffallenderweise hatte das Großkapital bei der Zeichnung der Aktien eine starke Rückhaltung beobachtet. Die Vereinigten Staaten von Amerika brachten den Unternehmern unter Betonung der Monroedoktrin ein starkes Mißtrauen entgegen. Auch England bewies kein Wohlwollen. Als man mit dem Bau am 1. Februar 1882 begonnen hatte, zeigte sich, daß man die Schwierigkeiten des Unternehmens erheblich unterschätzt hatte. Diese bestanden nicht nur in zu überwindenden Hindernissen, die die eigenartigen Boden- und Wasserverhältnisse mit sich brachten, sie lagen vielmehr auch großenteils auf gesundheitlichem Gebiet und stellten den Fortgang der Arbeiten durch mörderische Seuchen in Frage. Bis zum Jahre 1884 mußten vier Anleihen aufgenommen werden. Im folgenden Jahre, als man sich vor täglichen Ausgaben von mehr als 1 Mill. Fr. sah, schätzte Lesseps die für den Bau erforderliche Summe auf 1400 Mill. Fr. Etwa 20 000 Arbeiter waren bei dem Bau beschäftigt, 150 Lokomotiven, 5000 Kippwagen, 20 Naßbagger, 80 Trockenbagger, 4 Seebagger zählten zu den Betriebsmitteln der Bauunternehmer. Schon damals hatten die Erdarbeiten durch massenhafte Rutschungen zu leiden. Der Chagresfluß erwies sich durch die gewaltigen Wassermassen, die er zur Zeit der Regenzeit dahinwälzt, als überaus tückisch. Im Laufe des Jahres 1886, als man 22 Mill. cbm Erde ausgeschachtet und festgestellt hatte, daß dies nur ein Viertel der gesamten Erdarbeiten ausmachte, kam man zu der Überzeugung, daß der Bau eines Niveaukanals nicht ausführbar sei. Man entschloß sich daher zum Bau eines Schleusenkanals, für welchen das erforderliche Betriebswasser in mehreren großen Sammelbecken aufgespeichert werden sollte. Die finanziellen Schwierigkeiten nahmen aber inzwischen immer mehr zu; im März 1889 geriet die Baugesellschaft in Konkurs, nachdem Lesseps kurz vorher die Leitung des Unternehmens niedergelegt hatte. Den Passiven im Betrage von 1172 Mill. standen Aktive nur im Betrage von 231 Mill. gegenüber. Zahlreiche kleine Kapitalisten hatten den Verlust ihrer Spargroschen zu beklagen. Die Gerichte griffen ein, und es entrollte sich jener hinfort zum Schlagwort gewordene Panamaskandal, in den eine große Zahl von Beamten, Parlamentariern und Geldleuten verwickelt wurde. Lesseps, der 87jährige Erbauer des Suezkanals, wurde mit 5 Jahr Gefängnis bestraft. Dieses Urteil wurde aus formalen Gründen wieder aufgehoben, da das Vergehen verjährt war. Lesseps aber starb am 7. Dezember 1894 in geistiger Umnachtung. Eine Liquidationskommission wurde eingesetzt, der es gelang, eine neue Gesellschaft mit einem Kapital von nur 65 Mill. Fr. zu bilden, während 900 Mill. erforderlich gewesen wären. Dieser Gesellschaft wurde die inzwischen erloschene Baukonzession bis zum Jahre 1903 verlängert, und sie suchte nunmehr, ihre Rechte an die Vereinigten Staaten zu verkaufen. Hier stellte sich aber eine unvorhergesehene Schwierigkeit ein, indem der Staat Kolumbien sich weigerte, an die Vereinigten Staaten das für den Kanalbau erforderliche Land zu überlassen. Diese Schwierigkeit wurde schließlich dadurch beseitigt, daß der Staat Panama sich von Kolumbien trennte und den Vereinigten Staaten zu beiden Seiten des Kanals einen Landstrich von 18 km Breite nebst allen Hoheitsrechten abtrat. Dies geschah im November 1903. Nunmehr begann eine erneute Prüfung der Frage, in welcher Form der Kanal am vorteilhaftesten zur Ausführung gelangen könne. Zu diesem Zwecke wurden zwei Kommissionen, eine amerikanische und eine internationale, eingesetzt. Erstere entschied sich für einen Schleusenkanal, letztere für einen Niveaukanal. Präsident Roosevelt entschloß sich für einen Schleusenkanal. Der Kongreß entschied sich in dem gleichen Sinne, und die Vereinigten Staaten begannen in der zweiten Hälfte des Jahres 1906 mit dem Bau nach folgendem allgemeinen Plane.

 

Der Kanal benutzt so weit als möglich das Bett der Flüsse Rio Chagres und Rio Grande Superior, so daß der Kanal zum Teil einen seeartigen Eindruck erweckt. An der Wasserscheide der Landenge, bei Culebra, steht auf eine Länge von 12,8 km ein Flußlauf nicht zur Verfügung; hier muß das Gebirge mit einem gewaltigen Einschnitte durchbrochen werden. Ursprünglich hatte man aus Sparsamkeitsrücksichten hier eine geringere Kanalbreite in Aussicht genommen. Durch die auf die Zunahme der Größe der Kriegsschiffe gebotene Rücksichtnahme hat man sich aber veranlaßt gesehen, auch in diesem Einschnitt die Breite des Kanals auf 92 m zu bringen. Der Rio Chagres schwillt während der Regenzeit plötzlich derart an, daß es sich erforderlich machte, seine Wassermengen aufzustauen und diese allmählich je nach Bedarf zur Speisung des Kanals zu verwenden. Diesem Zwecke dient ein bei Gatun errichtetes Staubecken von 425 qkm Fläche, das in einer Höhe von 26 m über dem mittleren Spiegel der zu verbindenden Ozeane liegt. Zu diesem Stausee führen vom Stillen Ozean drei Doppelschleusen und vom Atlantischen Ozean ebenfalls drei Doppelschleusen hinauf. Für weitere Sicherung des für die Speisung des Kanals und seiner Schleusen erforderlichen Wassers sind dann noch zwei Vorratsbecken, bei Miraflores und bei Gamboa, vorgesehen. Der Kanal erstreckt sich an seinen beiden Enden in das Meer hinaus, und zwar 11 km weit in die Limonbucht und 13 km in die Bai von Panama. Im Jahre 1906 schätzte man die Gesamtkosten für die Arbeiten am Kanal auf 140 Mill. Dollar, nach Verlauf von 3 Jahren schätzte man sie auf das Doppelte. Hierzu kamen noch für die Hafenbauten in Colon und Panama, für Eisenbahnbauten, für an die französische Gesellschaft und an die Republik Panama zu leistende Zahlungen mehr als 200 Mill. Dollar, so daß die Gesamtkosten im Jahre 1909 durch Taft auf etwa 360 Mill. Dollar oder 1½ Milliarde Mark geschätzt wurden.

Am 10. Oktober 1913 fiel die letzte Erdwand, die den Gatun-See von dem Culebra-Einschnitte trennte, durch eine von Washington aus durch Präsident Wilson bewirkte Sprengung, so daß hinfort die Wasser der beiden Ozeane miteinander in Verbindung standen.

Am 8. Juni 1914 durchfuhr der erste größere Dampfer von 4000 t Rauminhalt die Schleusen von Gatun, und am 15. August fand die Eröffnung des Kanals statt. An diesem Tage legte der Dampfer »Ancon« mit dem um die Fertigstellung des Kanals hochverdienten Oberst Goethals an Bord die Fahrt von Christobal zum Stillen Ozean in 9 Stunden zurück, wovon 70 Minuten auf die Schleusen von Gatun entfielen. Die Summe der Baukosten wurde zu 1575 Mill. Mark angegeben. Hierin sind 168 Mill. Mark eingeschlossen, die die französische Kanalgesellschaft erhalten hat, aber nicht deren auf 700 bis 800 Mill. Mark bezifferte Verluste. Die Unterhaltungskosten werden auf jährlich 2 205 000 Mark geschätzt; hierzu kommen noch 1 050 000 Mark für die an Panama zu zahlende Rente.

Die ernsteste Gefahr droht dem Kanal, abgesehen von Erdbeben und vulkanischen Ausbrüchen, auch nach seiner Vollendung von den Abrutschungen, die an den Böschungen auftraten und im Culebra-Einschnitt immer wieder neue Erdmassen in das Kanalbett warfen. Dieser Einschnitt erreicht eine Tiefe von 160 m unterhalb seines Randes; der Kölner Dom könnte also in demselben stehen, ohne mit seinen Turmspitzen über die Böschung emporzuragen. Das hier zu durchfahrende Gestein ist allerdings, so lange es im Gebirge ansteht, überaus hart, verwittert jedoch, wenn es mit der Luft in Berührung kommt, schnell. Außerdem ist es mit Ton durchsetzt, der durch die tropischen Regengüsse erweicht wird und das Gestein in das Kanalbett hinabgleiten läßt. Schon im Jahre 1887 stürzten in einer Nacht 78 000 cbm von den Böschungen. Am 9. Februar 1911 stürzten 30 0000 cbm Erde und Fels ab, 50 Menschenleben vernichtend und 3 Eisenbahnzüge unter sich begrabend; am 5. September 1912 stürzte eine Erdmasse ab, die auf 1 200 000 cbm, von andrer Seite sogar auf 7 Mill. cbm geschätzt wurde. Am 4. August 1915 begann ein riesiger Erdrutsch im Culebra-Einschnitt, der vom 18. September 1915 bis zum 16. April 1916 eine Sperrung des Kanals verursachte. Die abgestürzten Erdmassen beliefen sich auf etwa 10 Mill. cbm. Außerdem aber wölbte sich der Boden des Kanalbettes um 4 bis 5 m empor, eine Erscheinung, die man bei der Planung des Kanals nicht erwartet und daher nicht berücksichtigt hatte. Wie Professor Balschin in der Zeitschrift der Gesellschaft für Erdkunde in Berlin ausführte, stellt die Erdoberfläche eine Gleichgewichtsfläche dar, die bestrebt ist, bei derartigen gewaltsamen Eingriffen, wie es der Culebra-Einschnitt ist, ihre ursprüngliche Form wiederherzustellen. Jedenfalls haben die im Culebra-Einschnitt auftretenden Schwierigkeiten deutlich ergeben, daß der von Lesseps und andern Sachverständigen geplante schleusenlose Niveaukanal unausführbar gewesen wäre.