Kostenlos

Die Welt auf Schienen

Text
iOSAndroidWindows Phone
Wohin soll der Link zur App geschickt werden?
Schließen Sie dieses Fenster erst, wenn Sie den Code auf Ihrem Mobilgerät eingegeben haben
Erneut versuchenLink gesendet

Auf Wunsch des Urheberrechtsinhabers steht dieses Buch nicht als Datei zum Download zur Verfügung.

Sie können es jedoch in unseren mobilen Anwendungen (auch ohne Verbindung zum Internet) und online auf der LitRes-Website lesen.

Als gelesen kennzeichnen
Schriftart:Kleiner AaGrößer Aa

Da die Brücke von Schnellzügen befahren wird, so ist auf eine besonders gute Sicherung derjenigen Stellen Wert gelegt, an denen die auf den Klappen liegenden Schienen mit den festen Geleisen zusammenstoßen. Vom Steuerhaus der Brücke aus werden durch ein Hebelwerk sehr kräftige, keilförmige Laschen an beiden Enden der niedergelegten Brücke gegen die zusammenstoßenden Schienenenden gepreßt. Selbstverständlich sind die Signale vor der Brücke so eingerichtet, daß sie nur dann auf Fahrt Frei gezogen werden können, wenn die Brücke geschlossen und fest verriegelt ist.

In Schweden ist eine sehr große Klappbrücke anderer Form von einer deutschen Firma erbaut worden. Sie führt über den Trollhätta-Kanal. Man hat hier besonderen Wert auf rasche und leichte Beweglichkeit der Brückenbahn gelegt, da sowohl Wasserlauf wie Eisenbahn lebhaften Verkehr haben. Es ist darum am Ende der Klappe ein Gegengewicht angebracht, das der Brücke die Form einer Wippe gibt. Das Gegengewicht bildet mit den Brückenbalken ein verschiebliches Parallelogramm. Die Gewichte sind so ausgeglichen, daß bei jeder Bewegung immer nur der Reibungswiderstand zu überwinden ist. Dadurch wird bei dem hier notwendigen, sehr häufigen Öffnen der schweren Brücke sehr viel an Betriebskosten gespart, und die Bewegung vollzieht sich rasch. Diese Wippbrücke hat eine Länge von 42 Metern. Die Firma Gollnow & Sohn in Stettin hat sie in den Jahren 1914-16 trotz aller Schwierigkeiten, die der Krieg verursachte, rechtzeitig fertiggestellt.

Ein ganz besonders eindrucksvolles Werk deutscher Brückenbaukunst im Ausland ist die Eisenbahnbrücke auf der Strecke Amsterdam-Zaandam, die über den vom Amsterdamer Hafen zur Nordsee laufenden großen Seekanal führt. Die Unterkante der Brücke liegt zwölf Meter über dem Wasserspiegel, so daß kleine Dampfer ohne weiteres hindurchfahren können. Das Öffnen erfolgt durch Drehen des 128 Meter langen Mittelteils. Er ist 150 000 Kilogramm schwer, kann aber trotzdem in einer Minute um 90 Grad gedreht werden.

Den Antrieb besorgen Elektromotoren, die sich über dem gewaltigen, einem Turm gleichen Mittelpfeiler befinden. Ein Zahngetriebe greift zum Hervorrufen der Bewegung in einen Zahnkranz ein. Die Drehbrücke ruht nicht auf einem Spurlager, sondern sie steht auf 48 Stahlrollen, die in einem kreisförmigen Rahmen gelagert sind. Diese größte Drehbrücke auf dem europäischen Festland ist von der Firma August Klönne in Dortmund hergestellt worden.

Wer Amsterdam besucht, wird von seinen Freunden stets auch zu dieser Sehenswürdigkeit geführt, obgleich sie recht weit von der Stadt abliegt. Es gibt in der Tat wenige Brücken in Europa, die einen so mächtigen Eindruck machen wie diese ungeheure, um den Kopf eines Turms sich drehende eiserne Fahrbahn.

Die vollspurigen Eisenbahnen Deutschlands besaßen zwar schon im Jahre 1910 639 Tunnel, aber es befindet sich kein einziges Bauwerk darunter, das im Vergleich zu den großen Alpendurchstichen irgendwie bemerkenswert genannt werden könnte.

Der längste deutsche Tunnel ist der, mit welchem die Moselbahn das Randgebirge des Flusses, den sie sonst treu begleitet, bei Kochem durchstößt. Das Bauwerk ist 4200 Meter lang und hat die Aufgabe, einen Bogen von 22 Kilometern, den die Mosel an dieser Stelle bildet, geradlinig abzuschneiden. Vom Eingang bis zum Ausgang des Kochemer Tunnels fährt die Eisenbahn sechs Minuten; das Dampfschiff braucht für die gleiche Strecke stromab 112, stromauf 212 Stunden. Da die Rauchgase aus diesem Tunnel sehr schlecht abziehen, befindet sich an seinem Eingang eine große, durch Maschinen betriebene Lüftungsanlage.

Der zweitgrößte Felsdurchstich in Deutschland ist der neue Tunnel unter dem Diestelrasen, der seit wenigen Jahren die Spitzkehre von Elm abschneidet. Der Begriff der Spitzkehre wird alsbald näher erörtert werden. Unter der Brandleite bei dem bekannten Thüringer Badeort Oberhof liegt der drittgrößte Tunnel Deutschlands; er ist 3030 Meter lang. Alle übrigen sind weit kürzer.

Die Anlagen aber, mit deren Hilfe die Eisenbahn große vorgelagerte Gebirge überschreitet, gehören zu den großartigsten Werken, die jemals von Menschenhand ausgeführt worden sind. Auch in Europa sind zur Überschienung der Alpen, die sich in der Schweiz, in einem Teil von Österreich und beim Vordringen nach Italien der Eisenbahn entgegenstellen, viele gewaltige Tunnelanlagen mit großartigen Zufahrtsstraßen hergestellt worden, deren Errichtung die höchste Kunst der Ingenieure erfordert hat. Der deutsche Boden hat keinen Anteil an diesen Leistungen, wohl aber der deutsche Geist, da es zu einem großen Teil Baumeister deutscher Abstammung gewesen sind, welche diese wahrhaft erhabenen Werke erdacht und ausgeführt haben.

Noch weniger als im flachen Land kann die Eisenbahn im Gebirge den kürzesten Weg wählen. Hat sie doch hier fortwährend große Höhenunterschiede zu überwinden, wobei eine gewisse Weglänge niemals unterschritten werden darf, damit die Steigungen in zulässigen Größen bleiben. Geht es allzu steil aufwärts, so versagt die einfache Reibungsbahn, und man muß zur Anwendung des Zahnrads übergehen. Bei Benutzung dieser Vorrichtung aber können die Strecken nur mit so geringer Geschwindigkeit befahren werden, daß ein großer durchgehender Verkehr darauf nicht mehr zu bewältigen ist. Zur Herbeiführung schneller Beförderung zieht man daher vor, den Gebirgsbahnen künstliche Längenentwicklungen zu geben. Wenn diese auch große Umwege in sich schließen, so kommt man doch immer noch schneller von Punkt zu Punkt, als auf der kürzeren Strecke mit Zahneinrichtung.

Die einfachste Form der künstlichen Längenentwicklung, zugleich aber die am wenigsten vorteilhafte, ist die Spitzkehre. Ein jeder kennt sie von den Gebirgsstraßen her, wo sie in der Form der sogenannten Schlangenwege auftritt. Damit der Wanderer nicht allzu scharf emporzusteigen braucht, wird die Straße nicht geradlinig an der Berglehne hinaufgeführt, sondern sie zieht im Zickzack dahin, weicht bald weit nach rechts, bald weit nach links aus, um sich in spitzem Winkel stets wieder zurückzuwenden, damit für das Emporklimmen eine größere Zahl von Schritten gemacht werden kann, bei jedem einzelnen also nur eine geringere Hebung des Körpers notwendig ist.

Auf diese Weise vermag auch die Eisenbahn an einem steilen Hang hinaufzuklettern. Freilich kann der Zug an dem spitzen Ende des Umwegs nicht ohne weiteres umkehren, wie das der Fußgänger vermag. Beim Befahren von Spitzkehren muß der Zug vielmehr bald vorwärts, bald rückwärts laufen, indem er jedesmal auf dem Weg zwischen zwei Spitzen etwas in die Höhe steigt. Es ist also notwendig, bei jeder Spitze anzuhalten und die Lokomotive an das andere Ende des Zugs zu bringen. Hierdurch wird ein absatzweises, also sehr langsames Fahren bedingt.

Von einer solchen Spitzkehren-Anlage macht die Bahn, welche aus der indischen Ebene zu dem berühmten Badeort Darjeeling im Himalaya emporführt, einen reichen Gebrauch. Auch in Deutschland sind auf Bahnstrecken mehrmals Spitzkehren vorhanden. Die Harzbahn Blankenburg-Tanne besitzt eine solche auf ihrem Bahnhof Bast-Michaelstein, und ferner waren zwei Spitzkehren bis vor kurzem auch in die große Schnellzugstrecke Berlin-Bebra-Frankfurt a. M. bei Bebra und in der Nähe des bereits erwähnten Bahnhofs Elm eingeschaltet. Sie liegen heute beide in Nebenstrecken.

Die Bahn hat bei Elm die Wasserscheide zwischen dem Main und der Weser zu übersteigen. Um die Kosten möglichst gering zu halten, suchte man bei der Anlage der Strecke über die Höhe von 318 Metern dadurch hinwegzukommen, daß man die Bahn vom Bahnhof Schlüchtern aus, gleichlaufend mit dem Höhenrücken in einem langen Umweg nach Elm führte, dort die Zugrichtung umkehrte und wieder an dem Höhenrücken, aber auf dessen anderer Seite, entlang zurückfuhr, bis bei Flieden die eigentliche Fahrtrichtung von neuem erreicht war. Die Entwicklung der Strecke Berlin-Bebra-Frankfurt a. M. zu einer der wichtigsten Durchgangslinien ließ jedoch diese zeitraubende Höhenüberwindung so lästig erscheinen, daß man sich vor einigen Jahren entschloß, statt der weit ausbiegenden Spitzkehre einen Tunnel zwischen Schlüchtern und Flieden durch den Diestelrasen-Berg anzulegen. Infolge dieser Neuanlage ist der Weg jetzt um 6,8 Kilometer abgekürzt und die Steigung um 36 Meter vermindert. Jeder Schnellzug gewinnt dadurch 15 Minuten, eine Zeitersparnis, durch welche allein die sehr bedeutenden Ausgaben für den Bau des Diestelrasentunnels wohl gerechtfertigt wären, wenn sich nicht auch noch weitere Vorteile ergäben.

Bei den Alpenüberquerungen läßt sich auch auf den ganz großen, durchgehenden Strecken die Anlage von Kehren nicht vermeiden. Man verbessert sie aber dadurch, daß man an der Stelle, wo die Fahrtrichtung umkehrt, nicht eine Spitze anordnet, sondern einen sanften Bogen, den der Zug durchfährt, ohne anzuhalten, und ohne daß die Maschine umgesetzt zu werden braucht. Es entsteht auf einer solchen Rundkehre also kein größerer Zeitverlust als er von der unvermeidlichen Durchfahrung des Umwegs erheischt wird. Man legt, wenn es irgend möglich ist, solche Rundkehren oder Schleifen in Seitentäler, weil bei solcher Anordnung die geringste Zahl von Kunstbauten notwendig ist.

Stellt eine solche Seitentalschleife dar. Beim geradlinigen Durchfahren der Strecke zwischen den Höhenlagen +100 und +170 Meter würde die Bahn eine unzulässige Steigung zu überwinden haben; daher läßt man sie einen Umweg durch das Seitental machen, das gerade günstig zur Hand liegt. Hier klettert sie an der Berglehne der einen Talseite langsam empor, kehrt, immer steigend, am Ende des Tals in einem Bogen um und klettert langsam weiter, bis die Höhenlage +170 Meter erreicht ist. Ein schönes Beispiel einer solchen Seitental-Ausfahrung findet sich auf der Bahn über den Semmering, wo die Bahnhöfe Gloggnitz und Eichberg in der Luftlinie nahe beieinander liegen, der eine sich jedoch 171 Meter über dem anderen befindet. Dieser große Höhenunterschied wird durch eine weit ausholende Schleife im Seitental über Payerbach erstiegen.

 

Auch die Strecke über den Brennerpaß besitzt eine Anlage dieser Art. Hier zeigt die Eisenbahn einmal, daß sie schwerfälliger ist als die Landstraße. Zu Fuß gelangt man von Schellenberg nach Gossensaß weit schneller als im Abteil des D-Wagens. Die Landstraße steigt zwischen den in der Luftlinie nur 1100 Meter voneinander entfernten Orten ziemlich geradlinig hinunter. Die Bahn aber muß sich, um 176 Meter tief in das Tal der Eisack zu gelangen, seitlich weit in das Pflerschtal hineinwenden, da ihr die unmittelbare Überwindung einer Neigung von 1: 6 versagt ist. Sieben Kilometer werden hier – vom reinen Verkehrsstandpunkt betrachtet – unnötig durchfahren, aber nun beträgt die größte Neigung auf der ganzen Strecke nur 1: 45.

Seitentäler sind jedoch nicht immer zur Verfügung. Alsdann muß die künstliche Längenentwicklung in dem von der Bahn benutzten Haupttal selbst stattfinden. Dies gibt Anlaß zu den großartigsten und überraschendsten Bauten, insbesondere dann, wenn doch eine Seitenentwicklung durch die höchst merkwürdige Anlage von Kehrtunneln gewaltsam ermöglicht wird.

In diesen Bauarten hat die Bahn über den St. Gotthard zum erstenmal besonders Hervorragendes geleistet.

In der Nähe des Pfaffensprungs steigt das hier sehr schmale, beiderseits von ragenden Felsen eingeschlossene Tal der Reuß weit rascher auf, als daß die Bahn der Talhebung ohne weiteres zu folgen vermöchte. Es ist hier auch keine Gelegenheit, irgendwohin ohne weiteres auszubiegen, und so mußte eine Seitenausladung dadurch erzwungen werden, daß man in den Berg selbst einen eigenartig geformten Tunnel hineintrieb, der nun also die ansteigende Seitentalschleife zu ersetzen hat. In dem rückkehrenden Tunnel muß daher eine allmähliche Hebung der Bahn stattfinden, so daß dieser die Form einer Schraubenlinie mit Einer Windung erhält. Bei der Einfahrt in den Pfaffensprung-Berg liegt die Bahn 774 Meter hoch, bei der Ausfahrt hat sie 809 Meter erreicht, so daß sie im Berg um 35 Meter gestiegen ist.

Solcher großen Kehrtunnel, in denen die Bahn steigend ihre Fahrtrichtung einmal umkehrt, besitzt die Gotthardbahn jenseits des großen Scheiteltunnels noch vier, von denen die zwei in der Biaschina-Schlucht liegenden einander fast berühren. Dies schon ist ein besonders deutliches Zeichen dafür, welche außerordentlichen Umwege einer Gebirgsbahn mit gewöhnlichem Anhaftungsgleis zugemutet werden dürfen, ohne daß dessen Vorteile gegenüber dem Zahngleis verloren gehen.

Der größte Umweg, den die Gotthardstrecke macht, befindet sich jedoch bei dem Ort Wasen, bald hinter dem Pfaffensprung. Hier sind die nicht ganz geschlossenen Kehrtunnelschlingen als Enden zweier langer Schleifen in dem breiten Haupttal ausgebildet. In drei Stockwerken liegen die Bahnabschnitte in kühnstem Bau übereinander. Da die Umkehr der Fahrtrichtung an den Enden der beiden Schleifen in verdeckten Kehren, nämlich im Wattinger und Leggistein-Tunnel stattfindet, so daß sie mit dem Auge nicht verfolgt werden kann, vermag der Reisende, der keine Karte zur Hand hat, sich keine Vorstellung von dem Weg der Bahn zu machen. Welche Verwirrung die dreimalige Rückkehr zu dem gleichen Punkt in manchem Kopf anzustiften vermag, zeigt eine bekannte Anekdote, deren Schauplatz die Wasener Schleifenstrecke ist.

Ein Reisender, der des Landes unkundig ist, fährt zusammen mit einem Schweizer in einem Abteil des Gotthardzugs. Nachdem der Pfaffensprung-Kehrtunnel verlassen ist, fragt der Reisende den Schweizer, indem er zum rechtsliegenden Fenster hinausdeutet. „Was ist das für ein Bauwerk da oben?“ – „Das ist die Kirche von Wasen,“ lautet die Antwort. Es vergeht etwa eine Viertelstunde, und der Fremde sieht ein Gebäude dicht neben sich. „Und was ist dies?“ fragt er wieder. „Das ist die Kirche von Wasen,“ sagt der Schweizer. Der Fremde glaubt nicht recht gehört zu haben, denn dieselbe Antwort hatte er ja schon vor einer Viertelstunde erhalten, und damals lag die Kirche hoch über der Bahn. Stumm blickt er weiter hinaus, bis er plötzlich wiederum einen Turm weit unter sich, und zwar auf der linken Seite, erblickt. „Und diese Kirche dort, wie heißt sie?“ spricht er den Mitreisenden von neuem an. „Das ist die Kirche von Wasen,“ lautet die Antwort. Nun aber wird der Reisende wütend, er blickt den Schweizer zornig an, weil er glaubt, daß dieser ihn zum Narren halten wolle, und richtet während der ganzen Zeit, in der sie noch zusammen im Abteil sitzen, kein Wort mehr an ihn.

In der Wasener Doppelschleife, deren Anfangs- und Endpunkte in der Geraden nur drei Kilometer voneinander entfernt sind, steigt die Bahn um 256 Meter.

Der Zweck all dieser Kehren und Schleifen ist die Erreichung des eigentlichen Gebirgsdurchbruchs, des großen, meist ganz gerade durch die Gebirgsmasse hindurchführenden Tunnels. Man muß diese Bauten notgedrungen in eine gewisse Höhe legen, da sie näher am Fuß des Gebirges zu lang werden würden und auch der Druck des übergelagerten Gebirges beim Bau kaum zu bewältigen wäre. Bis zu welcher Höhe man jedesmal hinaufgehen soll, ist Sache oft sehr langer und beschwerlicher Erwägungen. Die großen Gebirgstunnel liegen denn auch in sehr verschiedenen Höhen.

Am höchsten von allen Bahnlinien klettert die Peruanische Zentralbahn Callao-Lima-Oroya hinauf. Der Galera-Tunnel, in dem sie die südamerikanischen Anden durchfährt, liegt 4774 Meter über dem Meeresspiegel. Das ist fast die Höhe des Mont Blanc, dessen Gipfel 4810 Meter emporragt. Man vermag in Peru die Geleise so hoch hinaufzuführen, weil dort, nicht allzuweit vom Äquator, die Grenze des ewigen Schnees in einer Höhe von 5000 Metern liegt, während die Alpen schon von 2800 Metern ab vereist sind.

Eine Fahrt mit der Peruanischen Andenbahn wird als ein besonderer Naturgenuß gerühmt. Es ist jedoch keine reine Freude, die man hierbei genießt. Denn schon in einer Höhe von 4000 Metern beginnt die Bergkrankheit sich bemerkbar zu machen. Die Eisenbahn klettert trotz aller Umwege viel zu schnell empor, als daß der menschliche Körper Zeit hätte, sich langsam an den verminderten Luftdruck zu gewöhnen. So stellen sich denn, ehe noch der Galera-Tunnel erreicht ist, bei den meisten Reisenden Atemnot, Herzklopfen und eine sehr unangenehme Mattigkeit in den Gliedern ein. Wenn der Zug in Oroya angelangt ist, füllt sich das dortige Hotel meist rasch mit Kranken, die einige Stunden brauchen, um sich wieder zu erholen. So nehmen die Gewalten, welche das heutige Antlitz der Erde schufen, dem Menschen einen großen Teil des Genusses wieder fort, den der Anblick der ungeheuren Gebirgsbildungen ihm zu gewähren vermag.

Die höchste Lage von allen Eisenbahnen in Europa – abgesehen von den eigentlichen Bergstrecken – erreicht die Brennerbahn mit 1367 Metern über dem Meeresspiegel. Über den Brenner läuft der älteste Verkehrsweg zwischen Nordeuropa und Italien, weil hier die tiefste Alpeneinsattelung liegt. Aus demselben Grund wurde an dieser Stelle auch der erste Schienenweg über das gewaltige Gebirge gelegt. Die Brennerbahn ist die einzige von allen Alpenüberschienungen, die keinen großen Durchbruchstunnel besitzt. Die Paßhöhe wird vielmehr in einem offenen Einschnitt überschritten. Dies bedeutet einen großen Vorzug der Brennerbahn, sowohl was die Baukosten, als was die Annehmlichkeiten für die Reisenden bedeutet. Die Vermeidung eines Tunnelbaus ist jedoch nur möglich, wenn die Schienenoberkante, wie hier, nicht tiefer als 15 Meter unter den Bergrücken gelegt werden muß. Von da ab würde die Herstellung eines Einschnitts zu teuer werden.

Die weltberühmten großen Alpendurchstiche haben folgende Höhenlagen:

Durch diese gewaltigen Bauten hat die Schweiz ihr Land an die großen zwischenstaatlichen Verkehrswege angeschlossen.

In diesem Zusammenhang muß noch der Bahn über den Semmering besondere Erwähnung getan werden, da sie in den Jahren 1848-1854 als erste große Gebirgsbahn des europäischen Festlands erbaut wurde. Sie dient der Verbindung zwischen Wien und dem großen Adriahafen Triest. Alle Gebirgsbahnbauer auf der Erde haben aus dieser Anlage gelernt; was hier geschaffen war, wurde unmittelbar zum Vorbild für die Überschienung des Schwarzwalds und alsdann der Alpen.

Infolge ihrer verschiedenen Höhenlagen haben die großen Alpentunnel auch verschiedene Längen. Außer beim Mont Cenis-Durchstich wächst die Länge mit abnehmender Höhenlage. Die Längen betragen in abgerundeten Zahlen:

Dieser letzte ist der bei weitem längste Tunnel auf der Erde.

Der Bau eines Tunnels wird stets mit einem sogenannten Richtstollen begonnen. Es ist dies ein schmaler, niedriger Durchbruch in der gewählten Richtung, der nur gerade so viel Raum bietet, daß man darin arbeiten und das geförderte Gestein hinausschaffen kann. Vom Richtstollen aus wird dann die Ausweitung nach allen Seiten hin vorgenommen. Der endgültige Querschnitt muß so groß sein, daß jederzeit, ohne Beeinträchtigung des Bahnverkehrs, ein Gerüst für Ausbesserungsarbeiten im Tunnel aufgeschlagen werden kann.

Der Bau wird, damit man nicht allzuviel Zeit aufzuwenden braucht, stets von beiden Seiten zugleich begonnen. Dies setzt eine allergenaueste Feststellung der Richtung voraus, da die beiden Stollen ja in der Mitte zusammentreffen müssen. Mit Recht ist diese Richtungs-Festlegung eine der am meisten bewunderten Leistungen menschlichen Geistes. Ihre Grundlagen seien ganz kurz angegeben.

Die beiden Tunneltore liegen bei den großen Bauten stets so, daß man von dem einen aus weder das andere, noch irgendeinen Punkt von dessen Umgebung wahrzunehmen vermag. Man kann auch nicht eine Vermessungslinie über den Bergrücken legen und von dort etwa Bohrlöcher hinuntertreiben, da deren Länge viel zu groß werden würde und furchtbare Abgründe, sowie die Vergletscherung das Betreten des zwischenliegenden Bergrückens an vielen Stellen unmöglich machen. Es muß daher eine mittelbare Verbindung hergestellt werden. Deren Ziel ist, auf beiden Seiten den Winkel festzulegen, den die gewählte Tunnelrichtung mit je einer bekannten Linie im Gelände bilden muß.

Wir wollen, um ein Beispiel zu geben, annehmen, daß aus der nächsten Umgebung des Punkts, an dem das eine Tunneltor errichtet werden soll, eine Landstraße mit vielen Windungen in die Nähe des andren Tors hinüberführt, wie das auf der Fall ist. Man kann alsdann diese Landstraße genau abmessen, die Länge jeder gradlinigen Erstreckung festlegen und mit Hilfe der trigonometrischen Hilfsmittel auch ganz genau den Winkel bestimmen, den jede geänderte Richtung zu der vorhergehenden bildet. Nach Beendigung dieser Arbeit ist man imstande, die Landstraße mit vollkommener Genauigkeit in eine Karte einzuzeichnen. Verbindet man nun die beiden Anfangspunkte des Tunnels durch eine gerade Linie und verlängert diese so weit nach beiden Seiten, bis sie die eingezeichnete Landstraße schneidet, so kann man auf der Karte den Winkel abmessen, den die Tunnelachse zu den geschnittenen Landstraßenstücken diesseits und jenseits bilden muß. Damit liegt die Richtung genau fest, und es kommt jetzt nur darauf an, sie auch im Gelände abzustecken und beim Bau aufs genaueste innezuhalten.

Zu diesem Zweck wird zunächst auf jeder Seite der von der Karte entnommene Winkel zwischen dem letzten Straßenstück und der Tunnelachse abgemessen, und es werden zwei starke Pfosten in der genauen Tunnelrichtung in die Erde gesetzt. Auf ihnen werden die Richtungs-Festpunkte angebracht. Alsdann wird hinter dem ersten Pfosten ein Fernrohr aufgestellt, in dem ein senkrechter und ein wagerechter Faden, das Fadenkreuz, so angebracht sind, daß sie einander genau in der Mittelachse des Fernrohrs kreuzen. Man richtet das Fernrohr so, daß seine Mittelachse genau in der Richtung der Verbindungslinie liegt, die von dem Festpunkt des ersten Pfostens zum zweiten führt.

Wenn man nun an der Bergwand eine kleine Lampe derartig aufhängt, daß sie beim Schauen durch das so eingestellte Fernrohr gerade im Kreuzungspunkt der beiden Fäden erscheint, dann ist damit der Anfang der Tunnelachse bestimmt. Sobald der Richtstollen ein kleines Stückchen vorgetrieben ist, läßt man von der Decke wiederum ein Lämpchen hinunterhängen und verschiebt es so lange, bis der durch das Fernrohr Blickende es in gerader Linie hinter den beiden Pfostenmarken und der ersten Lampe liegen sieht. So wird allmählich Lampe hinter Lampe gehängt, neue mit vollkommenster Genauigkeit festgelegte Pfostenmarken werden auch im Tunnel in gewissen Abständen immer wieder geschaffen, und auf diese Weise ist man imstande, von beiden Seiten aus die Achsrichtung innezuhalten.

Die Genauigkeit der Richtungshaltung hängt natürlich von der Vollkommenheit der verwendeten Winkelmessungswerkzeuge ab. Bei dem vor kurzem von der deutschen Firma Julius Berger in der Schweiz gebauten neuen Hauenstein-Tunnel, der 8200 Meter lang ist, betrug beim Durchschlag die Achsabweichung der beiden Bauseiten nicht mehr als zwei Zentimeter; selbst bei dem 20 Kilometer langen Simplontunnel waren es nur 20 Zentimeter. Der Meßtechnik kann kein glänzenderes Zeugnis ausgestellt werden als durch diese eindrucksvollen Tatsachen.

 

Der Tunnel muß so gebaut werden, daß seine Sohle von beiden Seiten her gegen die Mitte etwas ansteigt, damit das Wasser, sowohl zugeführtes wie auch angeschlagenes Gebirgswasser, abfließen kann. Für die Heranschaffung von Frischluft zur Lüftung und Kühlung muß während der ganzen Bauzeit in lebhaftester Weise Sorge getragen werden. Sobald der Durchschlag erfolgt ist, pflegen sich die Tunnel, insbesondere durch die Mithilfe der fahrenden Züge, selbst zu lüften, da zwischen den beiden Toren gewöhnlich ein starker Unterschied des Luftdrucks besteht. Wenn die Selbstlüftung nicht ausreicht, müssen, wie beim Kochemer Tunnel und auch auf dem Gotthard, künstliche Luftzuführungs-Einrichtungen geschaffen werden.

Die Tunnelbaukunst ist in den letzten Jahrzehnten lebhaft vervollkommnet worden. Früher mußte man die zur Aufnahme des Sprengstoffs dienenden Bohrlöcher mit der Hand herstellen. Ein Arbeiter drehte den Bohrer, eine mit stählerner Spitze versehene Eisenstange, während ein anderer daraufschlug. Sehr viel geschwinder arbeiten natürlich Bohrmaschinen, von denen die ersten beim Mont Cenis-Tunnel verwendet wurden. Heute besitzt man vorzügliche Einrichtungen dieser Art, die durch Preßwasser, Druckluft oder Elektrizität betrieben werden können. Auch die Maschinenbohrer arbeiten sämtlich so, daß die Bohrstange zugleich gestoßen und gedreht wird. Man vermag heute mehrere Löcher zu gleicher Zeit herzustellen, und da auch die Wirkung der Sprengstoffs bedeutend vervollkommnet ist, wodurch man mit einer immer geringeren Zahl von Löchern auskommen kann, so vollziehen sich die Tunnelbauten immer rascher. Beim Gotthard-Tunnel vermochte man in den günstigsten Monaten nur um je 111 Meter vorwärts zu kommen, beim Arlberg-Tunnel brachte man es schon auf 166 Meter im Monat, und der Simplon-Tunnel wurde in der gleichen Zeit um je 270 Meter vorgetrieben.

Noch deutlicher sprechen die folgenden Zahlen. Für die Herstellung des im Jahre 1880 durchgeschlagenen, 15 Kilometer langen Gotthard-Tunnels brauchte man 8 Jahre, für den 1871 vollendeten, um 3 Kilometer kürzeren Mont Cenis-Tunnel sind 13 Jahre Bauzeit notwendig gewesen. Der 20 Kilometer lange Simplon-Tunnel ist von der Hamburger Firma Brandt, Brandau & Co. trotz vieler unerwarteter Hindernisse in nur 612 Jahren hergestellt worden. Die Gesamtkosten betrugen 78 Millionen Franken.

Welche Schwierigkeiten bei der Führung eines Tunnels durch eine gewaltige Gebirgsmasse zu überwinden sind, welch furchtbare Kämpfe der Mensch hierbei mit den unterirdischen Gewalten auszufechten hat, die ihm immer neue Hindernisse in den Weg stellen, zeigt am besten eine Schilderung vom Bau des Simplon-Tunnels, den die schweizerischen Bundesbahnen veröffentlicht haben:

„Bald erhöhte der Berg die Wärme im Innern zu unerträglicher Hitze, bald schob er heimtückisch weiches, bröckelndes Gestein in die zu erbohrende Bahn, bald suchte er mit lastender Masse das Gewölbe einzudrücken, und bald ließ er wieder aus seinem Schoß mächtige kalte und warme Quellen, wahre Bergbäche, in die mühsam gebauten Stollen einbrechen, Vernichtung und Untergang drohend.

„Bis zum November 1903 sollte nach der ursprünglichen Berechnung der Tunnel erbohrt sein. Nach den Fortschritten der ersten Zeit glaubte man den Durchschlag noch früher ermöglichen zu können. Als man jedoch auf der Nordseite beim sechsten Kilometer angelangt war, stieg plötzlich die Gesteinswärme in erschreckender und ganz ungeahnter Weise. Für den siebenten Kilometer hatte man auf 36-37 Grad gerechnet; statt dessen fand man aber 45-56 Grad; 500 Meter weiter waren es bereits 53 Grad, und immer noch schien die Hitze sich steigern zu wollen. Die bloße Zuführung kalter Luft genügte nicht mehr, um die weiteren Bohrarbeiten zu ermöglichen; es mußten besondere Vorrichtungen aufgestellt werden, die durch mächtige Sprühregen von eisigkaltem Wasser die Luft vor Ort so weit abkühlten, daß die Arbeit wieder aufgenommen und fortgesetzt werden konnte.

„War es im Nordstollen die Hitze, so waren es im Süden das nachdrückende Gestein und die gewaltigen Wassereinbrüche, welche die Arbeiten fast völlig zum Stillstand brachten. Der Druck des Bergs war ungeheuer; er zersplitterte die stärksten eingebauten Holzstämme und verbog mächtige Eisenbalken. Erst durch den Einbau gewaltiger Zementblöcke und stärkster Eisenträger gelang es, der fürchterlich lastenden Wucht dauernden Widerstand zu leisten. Die einbrechenden kalten und warmen Quellen, die den Tunnel überschwemmten, mußten mit unendlicher Mühe gefaßt und abgeleitet werden. Durch die Spalten des Gesteins rinnen jetzt ungefähr 1000 Sekundenliter ins Gewölbe und durch den Parallelstollen ins Freie.

„Das Maximum des Arbeiterstands zeigte die Ziffer von 4000 Mann. Weit über eine Million Kubikmeter Ausbruchsmaterial mußte aus dem Berginnern ins Freie geschafft werden. Zu den Sprengungen wurden etwa 1350 Tonnen Dynamit verwendet; dazu kamen etwa 4 Millionen Sprengkapseln und ungefähr 5300 Kilometer Zündschnüre. Die Anzahl der erforderlichen Bohrlöcher betrug rund 4 Millionen.“

Der stärkste der Wassereinbrüche, der plötzlich einsetzte, begrub eine Anzahl von Arbeitern im nachstürzenden Gestein. An der Stelle, wo sie gestorben sind, liegen sie noch heute im steinernen Ehrengrab, über dem sich als das mächtigste aller Denkmäler die gewaltige Masse des Simplon hoch emporwölbt.

Weitere Bücher von diesem Autor