Нелокальность: Феномен, меняющий представление о пространстве и времени, и его значение для черных дыр, Большого взрыва и теорий всего

Text
9
Kritiken
Leseprobe
Als gelesen kennzeichnen
Wie Sie das Buch nach dem Kauf lesen
Schriftart:Kleiner AaGrößer Aa

1. Многообразие видов нелокальности

Лаборатория Энрике Гальвеза в Университете Колгейта размером примерно с гараж на пару машин и, как и большинство гаражей, забита всякой всячиной. Вдоль стен расположены столы, заставленные ящиками с инструментами, неисправными в той или иной мере электронными устройствами, а слева от входа находится самый часто используемый аппарат – кофеварка. В середине комнаты стоит пара оптических скамей: очень прочные стальные платформы размером с обеденный стол, покрытые сетью отверстий для закрепления зеркал, призм, линз и фильтров. «Как будто снова играешь в конструктор», – говорит Гальвез, веселый перуанец, который сильно напоминает Эла Франкена[4].

Если кто и взял на себя задачу показать миру, как выглядит квантовая запутанность, так это Гальвез. Запутанность – это наиболее известный тип нелокальности из тех, что наблюдались современными физиками, и именно он пугал Эйнштейна. Слово entanglement («запутанность») в английском языке имеет коннотации романтической связи: особые и, возможно, мучительные взаимоотношения. Две запутанные друг с другом частицы не в прямом смысле сплетаются, как клубки пряжи, скорее между ними существует особая связь, для которой пространство не имеет значения. Вы можете наблюдать это явление, создавая, отклоняя и измеряя лучи света – не обычные лучи от фонарика, а пучки запутанных фотонов. В первых версиях этого эксперимента, проведенных в 1970-х гг. в Беркли и в Гарварде, были задействованы хитроумные изобретения «безумных ученых» вроде раскаленных печей, штабелей оконных стекол и грохочущих телетайпов. Гальвез воспользовался Blue-ray лазерами и оптоволокном для того, чтобы уменьшить размеры установки, так что теперь она умещается на школьной парте.

Большинство знакомых мне физиков-экспериментаторов в глубине души изобретатели, которых хитроумные устройства приводят в восторг не меньше, чем тайны Вселенной. Один экспериментатор из Центра квантовых технологий в Сингапуре сказал мне, что в его лаборатории студенты-новички должны пройти особый тест. В нем нет ни одного вопроса по физике. Студентам предлагают рассказать, случалось ли им разобрать какой-нибудь бытовой прибор и собрать его обратно до того, как домашние узнавали об этом. Похоже, что стиральные машины пользуются в этом смысле успехом. Что касается Гальвеза, то его детской страстью была химия: ее взрывоопасная разновидность. Он провел детство в Лиме, в районе, где жили люди среднего достатка, и однажды с друзьями попытался сделать порох. У них получилась только дымовуха, что, возможно, и к лучшему. «Получилось намного веселее, чем какие-то взрывы, – вспоминает Гальвез. – Наверное, это было не очень безопасно».

По словам Гальвеза, он стал поборником нелокальности практически случайно. Как и большинство физиков, он не слишком задумывался об этом явлении до конца 1990-х гг., когда один коллега заглянул к нему в кабинет с весьма волнующими новостями: австрийский физик Антон Цайлингер и его товарищи по лаборатории использовали запутанность для телепортации частиц из одного места в другое. Телепортация?! Ни один поклонник «Звездного пути»[5] не мог остаться равнодушным. Хотя группа Цайлингера телепортировала всего лишь отдельные фотоны, а не десантный отряд космических кораблей, восторг от этого события затмил все, что было связано с дымовухами. Причем методика была простой. Предположим, вы хотите телепортировать фотон из левой половины лаборатории в правую. Сначала вы подготавливаете телепорты, создавая пару запутанных фотонов и помещая один в одной половине лаборатории, а другой во второй половине. После этого вы берете фотон, который хотите перенести, и организуете его взаимодействие с левой частицей. Поскольку запутанные частицы находятся в особой связи друг с другом, это взаимодействие сразу же проявляется справа, что позволяет фотону там воссоздаться. (Некоторые придираются к словам и спорят, действительно ли можно называть этот процесс телепортацией. Они считают, что по смыслу это больше похоже на «кражу личности». Экспериментаторы лишают левую частицу ее свойств и навязывают их правой частице. Но частица – это всего лишь сумма ее свойств, так что эти два описания эквивалентны.)

У Гальвеза с коллегой уже имелось все необходимое оборудование, и вскоре они тоже перемещали частицы по своей лаборатории. «Мы пытались понять телепортацию просто ради интереса», – говорит Гальвез. Другой коллега предложил им придумать такой эксперимент с запутанностью, который могли бы повторить даже слушатели курса физики для лириков. В нем не происходит телепортации, но выполняется первый и самый важный этап этого процесса, а именно: создаются и распределяются запутанные фотоны. Хотя установка кажется теперь очень простой, группа ученых билась над ней два года. Гальвез организовал летние семинары для ALPhA, ассоциации физического образования, чтобы показать преподавателям, как проводить этот эксперимент, а также опубликовал свои инструкции онлайн, чтобы любители делать все своими руками могли создавать запутанные частицы у себя в подвалах. Бывший президент ALPhA Дэвид ван Баак восклицает: «Мы давно прошли ту стадию, когда [изучение] запутанности было исключительно делом университетов. Оно становится массовым».

В тот день, когда я посетил лабораторию Гальвеза, одна из оптических скамей была отдана под эксперимент по изучению запутанности, цель которого заключалась не только в демонстрации запутанности, но и в исследовании возможной причины этого явления. Мне кажется, что установка по существу является высокотехнологичной машиной Руба Голдберга[6] для подбрасывания монет. Они падают орлом или решкой в зависимости от того, проходят через фильтр или нет. Система настроена таким образом, что вероятность пройти его – 50 на 50, как в случае подбрасывания правильной монеты. В сущности, план такой: создать пару таких монет, подбросить их одновременно, посмотреть, какой стороной они упадут, создать еще одну пару, подбросить ее и т. д. Повторить опыт несколько тысяч раз и собрать статистику. Кажется, что мы тратим много усилий ради предсказуемого результата, пока не вспомнишь о том, что разговор идет о квантовых монетах. Ясно, что представление частиц в виде монет – это метафора, но если не воспринимать ее слишком буквально, то она вполне законна. Физики сами понимают явления при помощи метафор.

Чтобы привести установку в действие, Гальвез пропускает луч ультрафиолетового лазера через ряд оптических элементов, обеспечивающих должную юстировку. Этот луч попадает на небольшой кристалл бората бария, вещества, открытого китайскими учеными в начале 1980-х гг., который расщепляет ультрафиолетовый луч на два красных луча. Расщепление происходит на уровне отдельных частиц: если бы вы могли видеть луч как поток фотонов, то заметили бы, как некоторые ультрафиолетовые фотоны ударяются о кристалл и делятся на два идентичных красных фотона. Вот вам и монеты. Непосредственно перед кристаллом находится оптический элемент, известный как волновая пластинка, который Гальвез использует для того, чтобы контролировать выходной поток от кристалла. В зависимости от того, как он устанавливает волновую пластинку, красные фотоны получаются запутанными или нет.


Как только красные лучи расходятся, они перестают взаимодействовать. Гальвез направляет каждый луч в поляризационный фильтр, очень похожий на тот, что фотографы накручивают на объектив для подавления бликов. Фильтр пропускает или задерживает фотоны в зависимости от их ориентации, т. е. от их поляризации. Гальвез может с помощью лимба на боку фильтра контролировать, какие фотоны он будет пропускать. Для этого эксперимента оба фильтра настраиваются одинаково, так, чтобы они пропускали случайным образом половину фотонов, имитируя таким образом подбрасывание монет.

Фотоны, которые проходят через фильтры, направляются на детекторы, преобразующие их в электрические импульсы. Эти детекторы – самая дорогая и самая хрупкая часть установки. Из-за сверхвысокой чувствительности, позволяющей регистрировать одиночные фотоны, они стоят $4000 за штуку и легко повреждаются ярким светом. Даже в комнате с выключенным освещением детекторы регистрируют фотоны в бешеном темпе, потому что даже малейший проблеск света заставляет их срабатывать. Наблюдая за ними, я начинаю понимать, насколько светлой может быть якобы темная комната. Необходимо убедиться, что телефоны и ноутбуки полностью выключены – один-единственный включенный светодиод может испортить весь эксперимент. «Нам пришлось заклеить черной лентой все, что светилось в лаборатории, – говорит Гальвез. – Вы не представляете, сколько здесь всяких лампочек». Он накрывает приборы черной тканью и закрывает плотным пологом всю скамью.

 

Наконец, детекторы подключаются к счетчику с тремя цифровыми дисплеями, расположенными вне полога. Два из них показывают, какое число фотонов прошло через правый и левый поляризационные фильтры. Когда Гальвез включает лазер, эти числа мелькают как миллисекунды на секундомере. Третий дисплей показывает число «совпадений» – когда оба фотона из пары проходят каждый через свой фильтр. Продолжая метафору монет, совпадение означает, что обе монеты выпали орлом. Для Гальвеза такие совпадения являются возможностью взглянуть на квантовую нелокальность.

После небольшой экскурсии для меня Гальвез готов к проведению эксперимента. Желая убедиться, что все работает правильно, он сначала воспроизводит подбрасывание обычных монет, настраивая пластинку так, чтобы фотоны получались незапутанными. Счетчик показывает около 25 совпадений в секунду. Для сравнения: если бы каждый фотон в каждой паре проходил через фильтр, было бы 100 совпадений в секунду. Таким образом, частота совпадений равна примерно четверти максимально возможного значения. Именно этого можно ожидать, исходя из законов теории вероятностей. Если подбрасывать две монеты, каждая будет выпадать орлом в половине случаев, а обе будут выпадать орлом в четверти случаев.

Теперь Гальвез настраивает волновую пластинку так, чтобы фотоны оказывались запутанными. Частота совпадений подскакивает почти до 50 в секунду. Может показаться, что в изменении показаний счетчика в подвальной лаборатории с 25 до 50 нет ничего особенного. Но такова физика. Нужно немало усилий, чтобы приподнять завесу тайны над окружающим нас миром, и намеки на ее разгадку очень слабые, но от этого они не менее значимы. Годы ожиданий и приготовлений к этому моменту того стоили, поскольку, глядя на эти 50, я понимаю, что именно наблюдаю, и трепещу. Фотоны ведут себя как пара волшебных монет. Гальвез подбрасывает тысячи таких пар, и обе монеты всегда выпадают одной и той же стороной: либо обе орлом, либо обе решкой. Такого не бывает по чистой случайности.



Если бы кто-нибудь из моих друзей показал этот фокус на вечеринке: подбрасывал бы монеты так, чтобы они одновременно выпадали орлами в два раза чаще, чем должны, я бы подумал, что это розыгрыш. Должно быть, мой друг сходил в магазин для фокусников и купил специальные монеты, одинаковые с обеих сторон, результат подбрасывания которых предопределен. Мог ли подобный трюк объяснить ту закономерность, которую я наблюдал в лаборатории Гальвеза? Чтобы исключить возможность жульничества, Гальвез использует тактику, которую предложил в 1960-е гг. ирландский ученый, изучавший физику элементарных частиц, Джон Стюарт Белл. Он поворачивает один из фильтров на 90˚, что, так же как и подбрасывание монеты левой рукой вместо правой, не изменяет вероятность прохождения частицы через него, и если результат действительно предопределен, ничего не должно измениться. Но это, казалось бы, безобидное изменение влияет на фотоны. Частота совпадений падает практически до нуля – если один фотон проходит через фильтр, то второй нет. Другими словами, волшебные монеты вместо того, чтобы выпадать одной стороной, теперь всегда выпадают разными сторонами. Если бы кто-то хотел вас разыграть, ему бы понадобилась особая ловкость рук, чтобы справиться с этим фокусом. Проводя дальнейшие усовершенствования, Гальвез исключает все мыслимые придирки.

Я подхожу и еще раз изучаю оптическую скамью. Между фильтрами расстояние шириной с мою руку. В экспериментах Цайлингера и других ученых оно доходит до сотен миль, а исследователи Центра квантовых технологий работают над проведением этого эксперимента в космосе, где расстояния будут еще больше. Для крошечной частицы это равносильно другому краю Вселенной. Фотоны ведут себя согласованно на таком расстоянии. Они не контактируют друг с другом, никакая известная сила не связывает их, и тем не менее они ведут себя как единое целое. Когда Гальвез поворачивает поляризационный фильтр в левой части скамьи и фотон проходит через него, этот фотон поляризуется в том же направлении, что и фильтр. Его запутанный партнер в точности следует за ним: он приобретает такую же поляризацию и соответствующим образом взаимодействует со своим фильтром. Таким образом, происходящее слева влияет на фотон справа, даже когда на преодоление этого расстояния каким-либо воздействием нет времени. Такое воздействие должно было бы мгновенно распространяться от левой части к правой, т. е. бесконечно быстро, быстрее скорости света, что явно противоречит теории относительности. Это одна из многих загадок, которые нам задает нелокальность. Физики отмечали, что все это ближе к волшебству, чем что-либо, виденное ими ранее. «Студенты обожают это, – говорит Гальвез. – Хорошие студенты говорят: “Я хочу выяснить, в чем тут дело”».

Молчи и считай

Что такое нелокальность – всего лишь диковинка, о которой можно поахать и забыть, или же она занимает одно из центральных мест в физике? Большую часть XX в. физики относились к ней как к диковинке, и я в студенческие годы ничем не отличался от них. Лишь намного позже, когда мне в руки попала книга Тима Модлина «Квантовая нелокальность и относительность» (Quantum Nonlocality and Relativity), я оценил всю глубину этой тайны.

Сидя в своей гостиной, обставленной мебелью работы Джорджа Накашимы, Модлин рассказывает мне, что никогда не забудет тот момент, когда он узнал о квантовой нелокальности. Как-то осенью 1979 г. во время учебы в Йельском университете ему на глаза попался последний номер журнала Scientific American. Его главной темой были навозные жуки, но, полистав журнал, Модлин обнаружил статью о первых экспериментах с запутанностью. То, что частицы ведут себя как заколдованные, потрясло его. «Я помню день, когда прочитал эту статью, – говорит он. – У моих соседей по общежитию этот день тоже остался в памяти. Я ходил по комнате взад и вперед. Мир был не таким, как я думал раньше. Это выводило меня из равновесия».

Его также бесило, что преподаватели физики (как и в моем случае) даже не заикались об этом явлении. Когда он спрашивал об этом, они отмахивались от него. По воспоминаниям Модлина, он однажды поднял руку в аудитории и спросил, не может ли оказаться так, что квантовая теория не дает развиться более глубокой теории, в которой нынешние противоречия найдут объяснение. Преподаватель отмел эту идею и продолжил покрывать доску греческими буквами. «Он не предоставил никакого объяснения, почему нет, – говорит Модлин. – Просто закрыл вопрос, не отвечая на него».

Чтобы оценить то интеллектуальное препятствие, с которым столкнулись я и Модлин, нужно вернуться к знаменитым спорам между Эйнштейном и другим основателем квантовой механики, датским физиком Нильсом Бором. В 1920-х и 1930-х гг. Эйнштейна беспокоило то, что нелокальность противоречила его теории относительности. Он утверждал, что она должна быть своего рода иллюзией, свидетельствующей о нашем незнании какого-то важнейшего аспекта природы. Бор, со своей стороны… впрочем, никто не знает точно, на чем настаивал Бор. Его рассуждения дали слову «запутанный» совершенно новое значение, и его послания трактовались либо как отстаивающие нелокальность, либо как опровергающие ее. Если что-то и было вынесено из его слов, так это мысль о том, что неважно, какие странности происходят за кулисами, до тех пор пока теория может предсказывать то, что наблюдается в эксперименте.

Как известно любому, кто наблюдал президентские дебаты в США, суждения о «победе» или «поражении» часто имеют мало общего с тем, что на самом деле говорят участники. Большинство физиков просто хотели завершения спора Бора – Эйнштейна, чтобы можно было и дальше применять квантовую механику к практическим задачам. Поскольку Бор обещал прекращение прений, они сплотились вокруг него и списали Эйнштейна со счетов как вышедшего из моды. Позже кто-то писал про Эйнштейна, что его «репутация не пострадала бы, а то и укрепилась, займись он вместо этого рыбалкой».

В последующие десятилетия физики использовали квантовую теорию для самых разнообразных полезных вычислений. Они придумали транзисторы, лазеры и другие технологии, лежащие в основе современного мира. Таким образом, коллективное решение закрыть глаза на вопросы о более глубоком смысле этой теории казалось справедливым. Когда такие концептуальные вопросы все-таки возникали, физики считали их «философскими», и подразумевалось, что это не комплимент, а способ отрицания того, что эти вопросы вообще стоило задавать. Английский физик Поль Дирак писал: «Об этом беспокоится только философ, желающий обладать удовлетворительным описанием природы».

Поскольку вопрос и в самом деле зацепил Модлина, он решил получить диплом философа, а не физика. «Я хочу добраться до сути всего, – говорит он. – Это то, чем занимается философ». Философия характеризуется не только своими интересами, но и своими методами: философы специализируются на логике, а не на математике и экспериментировании. Модлин заработал среди философов репутацию «Доктора Опровергателя», способного найти ошибку в любом доказательстве. На протяжении всей работы над дипломом и в первые годы его профессорства, по словам Модлина, мысль о нелокальности вертелась у него на подсознательном уровне. Но никто из его знакомых, казалось, не интересовался ею, и в некотором смысле философы выглядели такими же заложниками принципа локальности, как и физики. Обстоятельства не давали Модлину больше думать об этом вплоть до осени 1990 г., когда умер Джон Стюарт Белл.

Белл сделал больше, чем кто-либо другой, для возобновления дела «Эйнштейн против Бора». Он начал сомневаться в победе Бора еще студентом университета в 1950-е гг., но понял, что высказывание сомнений не принесет пользы карьере. К середине 1960-х гг., сделав имя на исследовании частиц и проектировании ускорителей частиц, включая предшественников Большого адронного коллайдера, Белл почувствовал себя в достаточной безопасности, чтобы вернуться к юношеским интересам. Он показал, что нелокальность уже не исключительно повод для спора – ее можно запросто наблюдать в лаборатории. Как и Эйнштейн, Белл изо всех сил старался убедить своих коллег. Его первая статья на эту тему не цитировалась нигде в течение четырех лет и не упоминалась в учебниках до 1985 г. Даже когда работа Белла все-таки привлекла к себе внимание, ее нередко неверно истолковывали. Один из его некрологов был озаглавлен: «Человек, доказавший, что Эйнштейн был неправ». Это показывает полное непонимание мысли Белла о том, что нелокальность выходит за рамки того старого спора. Эйнштейн, возможно, был неправ, полагая, что нелокальность окажется только мнимой, но и Бор заблуждался, игнорируя ее полностью.

Как и Эйнштейна, Белла беспокоило то, что нелокальность бросает вызов теории относительности. Физики не могут отказаться от квантовой теории: она выдерживает все экспериментальные проверки. Точно так же невозможно вообразить, что теория относительности неверна. В лекции 1984 г. Белл заключил: «Мы имеем явную несовместимость, на самом глубинном уровне, между двумя столпами современной теории». Даже те, кто в остальном благожелательно к нему относился, не видели этой несовместимости. Создавая теорию относительности, Эйнштейн думал о том, как мы получаем информацию. Такие сигналы, как свет или звук, должны передаваться от объектов в окружающем мире к нашим органам чувств. Если эти сигналы распространяются мгновенно, они могут конфликтовать. В результате получаются парадоксы. Что-то одновременно происходит и не происходит. Внутренние механизмы Вселенной ломаются. Однако квантовые волшебные монеты не несут такой опасности. Они по своей сути не способны передавать сигналы. Они падают орлом или решкой, им нельзя приказать, как именно упасть. Нет способа контролировать их, чтобы передать сообщение или вообще сделать что-либо. Поэтому вы никогда не сможете использовать их для создания парадоксальной ситуации. Опасность предотвращена.

Другими словами, если запутанность – это волшебство, то оно не похоже на волшебную палочку, взмахом которой можно заставить что-то произойти. Скорее волшебство происходит спонтанно, и вы замечаете его, только если внимательно смотрите. Это очень разбавленная форма волшебства, которая не принесет никаких кубков в турнирах волшебников. Почти все убедили себя в том, что квантовая механика и теория относительности «мирно сосуществуют».

Ряд философов из Университета Ратджерса организовали в честь Белла симпозиум по квантовой физике и попросили выступить на нем Модлина. Возобновив свои исследования с того места, на котором он остановился еще студентом, Модлин продолжил разгребать гору информации, выросшую вокруг полученных Эйнштейном и Беллом результатов. Общепринятое видение теоретического согласия показалось Модлину слишком согласованным. «Простое указание на то, что вы не можете посылать сигналы, совсем не казалось мне достаточным для демонстрации того, что фундаментального конфликта с теорией относительности не существует», – говорит он. Даже если пара запутанных частиц не может передавать сигналы, квантовая теория все равно утверждает, что происходящее с одной из них мгновенно влияет на вторую. Таким образом, эта теория требует, чтобы у Вселенной было что-то вроде главных часов, гарантирующих, что 19:30 для одной частицы – это 19:30 для второй частицы. А теория относительности подобное отрицает. Теорию относительности называют так именно потому, что ход времени относителен. Два события, происходящие одновременно для одного человека, могут происходить поочередно для другого.

 

Доклад Модлина положил начало его книге, публикация которой совпала со всплеском интереса к запутанности. Экспериментаторы, осознавшие, что это явление не так бесполезно, как они думали раньше, начали применять его в криптографии и компьютерах. Так, Артур Экерт, физик из Оксфордского университета и нынешний директор Центра квантовых технологий, в 1991 г. доказал, что запутанные частицы могут создать настолько безопасный канал связи, что даже самая коварная правительственная программа наблюдения не сможет его перехватить. Как только физикам показали, какова значимость запутанности, они начали видеть ее практически везде, куда бросали взгляд. Она наблюдается даже в живых организмах. В фотосинтезе запутанностью объясняется неожиданно высокая эффективность, с которой молекулы преобразуют энергию света в химическую энергию, таким образом, запутанность вносит вклад в существование жизни на нашей планете.

К началу нового тысячелетия статья Эйнштейна, с которой все началось, стала одной из самых цитируемых в истории физики. Тем временем древняя стена между физиками и философами начала рушиться. Цайлингер, первопроходец среди экспериментаторов, часто расходится во взглядах с Модлином, но обменивается с ним идеями так, как 20 лет назад нельзя было и помыслить. «Эта связь между философией и физикой является решающей для достижения реальных успехов», – говорит мне Цайлингер.

Ясно, что квантовая нелокальность – это не просто представление за ужином в Лас-Вегасе, а неотъемлемая часть мира, и физики с философами до сих пор не знают, что стоит за этим волшебством. Могут ли ключи к разгадке находиться в других областях науки? Что можно узнать благодаря другим типам нелокальности, существующим в мире?

4Алан Стюарт «Эл» Франкен – американский писатель, комик, радиоведущий и политик. – Прим. пер.
5Star Trek – популярный американский научно-фантастический телесериал, созданный Джином Родденберри и положивший начало целой вселенной «Звездного пути». – Прим. пер.
6Руб Голдберг – американский карикатурист, писатель и изобретатель. Известен серией карикатур, изображающих чрезвычайно сложные и громоздкие устройства для выполнения очень простых функций. – Прим. ред.