Бесплатно

Time Telling through the Ages

Текст
0
Отзывы
iOSAndroidWindows Phone
Куда отправить ссылку на приложение?
Не закрывайте это окно, пока не введёте код в мобильном устройстве
ПовторитьСсылка отправлена

По требованию правообладателя эта книга недоступна для скачивания в виде файла.

Однако вы можете читать её в наших мобильных приложениях (даже без подключения к сети интернет) и онлайн на сайте ЛитРес.

Отметить прочитанной
Шрифт:Меньше АаБольше Аа

CHAPTER SIX
The Clocks Which Named Themselves

Now the scene changes again, and the story shifts forward over the interval of a thousand years. As we take up the tale once more, we find ourselves in another world, amid a life as different from that ancient life of which we have been speaking as either of them is from our own life to-day.

The ancient civilization, which may be traced from Rome through Greece, Babylon and Egypt back to the dim dawn of history, is gone almost as if it had never been. For there came a period when great hordes of barbarians defeated the armies, burnt the cities, pillaged and destroyed, leaving only desolation and ruin behind them. Then followed hundreds of years of what we call the "Dark Ages," – ages of ignorance and violence, when mankind was slowly struggling upwards again and was forming a new civilization upon the ruins of the old. Therefore, at the point we have now reached, there are no more white temples and pillared porticos and sandaled men in white tunic and toga, and marble statues in green gardens; but everywhere we find sharp roofs and towers, quaint outlines, and wild color like a child's picture-book.

There are castles with their moats and battlements, and monasteries with their cloistered arches; there are knights in armor riding, and lords and ladies gorgeous in strange garments, and monks in their dull gowns, and the sturdy peasant working in the field; and in the towns, all among peaked gables and Gothic windows and rough cobbled streets, a motley crowd of beggar and burgher and courtier, priest and clerk, doctor and scholar and soldier and merchant and tradesman – an endless variety of types, and each in the distinctive costume of his calling. And there are churches everywhere, from the huge cathedral towering like a forest of carven stone to the humble village chapel or wayside shrine, their spires all pointing up to heaven in token of the change that has come upon the life and spirit of the world.

We have come from the height of the classic period suddenly into the heart of the Middle Ages; and in the dark centuries that lie between, Christ and His Disciples have come and gone, and the religion of the Western World has changed; the old gods have perished and the saints have filled their places. And Rome has died, and Romance has been born.

The center of civilization has shifted to the north and west; from the old ring of lands around the Mediterranean to the great nations of modern Europe. Italy has become a jealous group of independent cities, great in art and commerce, but in little else. Germany is much the same, except for the lack of some few score centuries of tradition. France and Spain are already great and growing. William the Conqueror has fought and ruled and died, and the "Merry England" of song and story has grown up out of the fusion of Saxon and Norman. Chivalry and the Crusades, the times of Ivanhoe and The Talisman, are as fresh as yesterday.

And by green hedgerows and hospitable inns, Chaucer's Pilgrims are plodding onward toward the sound of Canterbury's bells. For here is the point of all our seeking – that there are clocks now in the monasteries and in the Cathedral towers. There is just one curious link of likeness between the Middle Ages and the remoter past; as it was at first at Babylon, so now in the fourteenth century the priesthood holds almost a monopoly of science and of learning.

Thus, although the sun-dial, clepsydra and sand-glass are still much used, we find ourselves at last in the time and lands of clocks. The very sound of the word "clock" gives a clue to its origin. It suggests the striking of the hour upon some bell. The French called the word cloche and the Saxons clugga, and both of these originally meant a bell.

If you will put yourself back in the picture at the beginning of the chapter, you will find yourself in a realm of sounding, pealing, chiming bells with the hours of prayer throughout the day, from matins to angelus, rung out from the belfries, and with frequent deep-toned strikings of the hour. Not even a blind man could have remained unconscious of the passage of the hours under such conditions, and time, in a sense, became more a possession of democracy although timepieces themselves were still the mark of special privilege.

Life also was beginning to hurry just a little. Very deliberate, we should call it in comparison with the mad rush of the twentieth century, and yet it began to show its growing complexity in that humanity was becoming more definitely organized and men were forced to depend more and more upon each other. In all of this, there was a slightly growing sense of the things that were to be, just as the water for some miles above Niagara begins to hasten its course under the influence of the mighty cataract over which it will at last go madly plunging.

Herein occurs another of those baffling questions, like the old-time puzzler as to whether the hen first came from the egg or the egg from the hen. One cannot help wondering to what extent the increasing accuracy of the broadening knowledge of time-keeping was the result of our complicated modern life and to what extent it was the cause. Certainly we cannot conceive of present-day affairs as being conducted save in the light of moving hands and figures upon a dial.

From the Middle Ages, then, we get our word for clock and, which is more important, we begin to get some crude application of its modern mechanical principles. They were wonderfully skilful, those medieval workmen, considering the means at their disposal, and the ingenuity of some of their clocks is still a delight, but, perhaps, for better understanding of the story, we should stop for a minute to inquire exactly what a clock means from the mechanical point of view.

A clock is a machine for keeping time. And for this there are four essentials, without any one of which there would be no clock. First, there must be a motive power to make it run; second, there must be a means of transmitting this power; third, there must be a regulating device to make the mechanism move steadily and slowly, and keep the motive power from running down too quickly; and, fourth, there must be some device to mark the time and make it known.

In a typical modern clock the power comes from the pull of a weight or the pressure of a spring – although clocks may, of course, be operated by electricity or compressed air or some other means; also, the regulator is what is known as the "escapement" and the recording device consists of the hands, the dial, and the striking mechanism. Having stated this, let us return to the past and see if we can determine how these principles came to be applied.

This is not altogether easy. Our forefathers were less particular than we over such trifling questions as names and spelling – even the learned Shakespeare, long afterward, used several different spellings of his own name. Thus, when we see in the records of the period the name of "clock" or "horologe" we cannot tell with certainty what type is meant, since "horologe" meant simply a device for keeping time; it might have been applied equally well to a clock, clepsydra, an hour-glass, or even a sun-dial.

"It is quite possible," writes M. Gubelin Breitschmidt, the younger, an eminent horologist of Lucerne, Switzerland, "that a large number of the technical inventions of antiquity were lost during the migrations of the barbarians and under the chaotic conditions prevailing during the first thousand years of Christianity, but the most perfect surviving instrument for measuring time was the water-clock, known as the clepsydra, which was able to maintain its supremacy long after the appearance of the wholly mechanical clock, just as the beautiful manuscripts of the artist monks and laymen were favored by the cultured classes long after the invention of movable types for printing.

"The spread of Christianity throughout Europe caused the foundation of many religious communities, and the severe rules by which they were governed – fixing the hours of prayer, labor, and refreshment – forced their members to seek instruments by which to measure time. In the year 605, a bull of Pope Sabinianus decreed that all bells be rung seven times in the twenty-four hours, at fixed moments and regularly, and these fixed times became known as the seven canonical hours. The sound of the bells penetrated and came to regulate not only the life of the religious bodies but also that of the secular people who lived outside the walls of the monasteries. Oil-lamps, candles, hour-glasses, prayers and – for those who had the means of buying them – clepsydræ served as chronometers for the brotherhoods; so that one can easily imagine that many a monk sought to improve these instruments. But as yet, no one had found means to regulate the wheel-system of a movement. In the best instruments of this period, water supplied the motive power and served as well to regulate the action."

There is a general belief that Gerbert, the monk, who was the most accomplished scholar of his age, and who later became Pope Sylvester II, was the one who first took the important step of producing a real clock, and that this occurred near the close of the tenth century – or to be more exact, about 990 A. D. This period was one of densest superstition, and expectancy of the end of the world was in the air, since many people had fixed upon the year 1000 A. D. as the date of that cataclysmic event.

Authorities of the Church and of the state were not very partial to invention and research, their attention being fixed largely upon theological, political, or military affairs; but, of course, inquiring and constructive minds were still to be found; even without encouragement these tended to follow the impulse of their natures.

 

It is to the monks in their cloisters that we chiefly owe the preservation of learning through the "dark ages," and from the monks, for the most part, came such progress of science and invention as was made. If Gerbert, the monk, after patient tinkering with wheels and weights in his stone-walled workshop, really achieved some form of the clock-action as we know it, he was one of the great benefactors of the human race. Still, it is not impossible that his device may only have been a more remarkable application of the clepsydra principle.

Whatever it was, it seems to have startled the authorities, for they are said to have accused him of having practiced sorcery through league with the devil, and to have banished him for a time from France. His age appears to have had a vast respect for the intellectual powers of his Satanic Majesty. Anything which was too ingenious or scientific to be understood without an uncomfortable degree of mental application was very apt to be ascribed to diabolic inspiration and thus found unfit for use in "Christian" lands. It could hardly have been a stimulating atmosphere for would-be inventors.

All of the credit that we are ascribing to Gerbert must therefore be prefixed with an "if." Did he really invent the clock-movements, or is this merely another of the tales which have blown down to us from this age of tradition and romance? For similar tales are told of Pacificus in 849 A. D. of the early Pope Sabinianus in 612 and even of Boetheus, the philosopher, as far back as 510 A. D., while always in the background are claims of priority for the Chinese who are supposed to have discovered many of our most important mechanical and scientific principles away off upon the other side of the world before these were dreamed of in the west.

If all of these various claims were true, which is far from likely, it still would not need to surprise us, for it must be remembered that humanity, until within the past few generations, was more or less a collection of separated units and its records were very incomplete. There was scant interest in abstract research and very limited intercourse between towns and countries; one who made an important discovery in one locality might be unheard of a hundred miles away. Unless all the conditions were favorable, his ideas might even pass from memory with his death, until some scholar of modern times might chance upon their record.

All that can with certainty be said, therefore, is that there were clocks of some sort in the monasteries during the eleventh century; that back of these were the clepsydræ and other time recording devices; and that here and there through the preceding centuries are more or less believable tales of inventions that had to do with the subject.

Let it be remembered, too, that some of the brilliant minds of ancient times made discoveries that were forgotten after the barbarian waves overwhelmed preceding civilizations. The ages following the downfall of Rome were those of intellectual darkness, illiteracy, and rude force until mankind groped slowly back toward the light through the process of rediscovery.

Thus, it mattered not at all to the medieval world that Archimedes, the great Greek scientist and engineer – who, however, chanced to live in the Greek colony of Sicily – was able, somewhere about 200 B. C., to construct a system of revolving spheres which reproduced the motion of the heavenly bodies. Such a machine must necessarily have involved some sort of clock-work. We dare not stop to consider Archimedes, lest we stray too far from our subject, but this marvelous man of ancient times, the Benjamin Franklin of his day, seems to have had a hand in almost every sort of mechanical and scientific research, from discovering the principle of specific gravity, in order to checkmate a dishonest goldsmith, to destroying Roman war-ships by means of his scientific "engines." The story is told that he set the ships on fire by concentrating upon them the rays of the sun from a number of concave mirrors. And, although this story may not be true, the things that he is known to have done are extraordinary.

Archimedes and his knowledge had long passed away when the monastery clocks of the eleventh century began to sound the hour. These were the fruit of a crude new civilization just struggling for expression, and represented the general period when William the Conqueror led his Norman army into England.

CHAPTER SEVEN
The Modern Clock and Its Creators

We learn that toward the close of the thirteenth century a clock was set up in St. Paul's Cathedral in London (1286); one in Westminster, by 1288; and one in Canterbury Cathedral, by 1292. The Westminster clock and the chime of bells were put up from funds raised by a fine imposed on a chief justice who had offended the government. The clock bore as an inscription the words of Virgil: "Discite justitiam moniti," "Learn justice from my advice," and the bells were gambled away by Henry VIII! In the same century, Dante, whose wonderful poem the Commedia, (the Inferno, Purgatory and Paradise) is sometimes called the "Swan Song of the Middle Ages," since it marks the passing of the medieval times, spoke of "wheels that wound their circle in an orloge."

Chaucer speaks of a cock crowing as regularly "as a clock in an abbey orloge." And this shows, curiously, the early meaning of the word, for by the word "clock," Chaucer evidently meant the bell which struck the hour, and, very obviously, he used the word "orloge" to indicate the clock itself.

Many of these "clocks" had neither dials nor hands. They told time only by striking the hour. Sometimes in the great tower clocks there were placed automatic figures representing men in armor or even mere grotesque figures which, at the right moment, beat upon the bell. These figures were called "jacks o' the clock" or "jacquemarts" and curious specimens of them are still in existence.

The early abbey clocks did not even strike the hour but rang an alarm to awaken the monks for prayers. Here again, the alarm principle precedes the visible measurement of time; even now, as already noted, we speak of a "clock" by the old word for "bell."

In the course of the following century – the fourteenth – clocks began to appear which were really worthy of the name, and of these we have authentic details. They were to be found in many lands. One of them was built, in 1344, by Giacomo Dondi at Padua, Italy. Another was constructed in England, in 1340, by Peter Lightfoot, a monk of Glastonbury. And in 1364, Henry de Wieck, De Wyck, or de Vick, of Wurtemburg, was sent for by Charles V, King of France, to come to Paris and build a clock for the tower of the royal palace, which is now the Palais de Justice. It was finished and set up in February 1379, and there it still remains after lapse of five and a half centuries, although its present architectural surroundings were not finished until a much later date.

This venerable timepiece termed by some chroniclers "the parent of modern timekeepers," was still performing its duty as late as 1850. And so it is a matter of interesting record that its mechanism, which served to measure the passage of time in the days when the earth was generally believed to be flat and when the Eastern Division of the Roman Empire was still ruled from Byzantium, now Constantinople, has served the same purpose within the possible memory of men now living. Its bell has one grim association – it gave the signal for that frightful piece of Medicean treachery, the Massacre of St. Bartholomew, planned by Catherine de Medici, the mother of the King Charles IX, when the armed retainers of the crown of France flung themselves upon the unsuspecting Huguenots and caused the streets to run red with the blood of men, women and children – a ghastly butchery of thousands of people.

As we have seen, de Vick's clock was neither the earliest made, nor among the earliest; nor, probably, did it embody any at that time new mechanical invention. It does, however, fairly and clearly typify the oldest style of clock of which we to-day have any accurate knowledge. Compare its description, then, with the clock upon your shelf.

We think of the tall-cased "grandfather's clocks" as antique; but this tower-clock of de Vick's outdoes them in antiquity by some four hundred years. And its most interesting feature is its curious likeness in mechanical principle to the clocks of modern times. Like most early clocks, it has only one hand – the hour-hand. Its ponderous movement is of iron, laboriously hand-wrought; the teeth of its wheels and pinions were cut out one by one. It was driven by a weight of five hundred pounds, the cord of which was wound round a drum, or barrel. This barrel carried, at one end, a pinion, meshing with the hour-wheel, which drove the hands; the flange at the other end of the barrel formed the great wheel, or first wheel of the train. This meshed with a pinion on the shaft of the second wheel, and this in turn with a lantern-pinion upon the shaft of the escape-wheel. All of this is, of course, essentially the modern train of gears, only with fewer wheels.

The escapement is the most important part of the whole mechanism, because it is the part which makes the clock keep time. It is an interrupter, checking the movement almost as soon as, under the urge of the mainspring, it starts forward. The frequency and duration of these interruptions determines the rate of running. Without this, the movement would run down swiftly; with it, the operation stretches over thirty hours, involving 432,000 interruptions.

De Vick's escapement is shown in the illustration. The escape-wheel was bent into the shape of a shallow pan, so that its toothed edge was at a right angle to the flat part of the wheel. Near it was placed a verge, or rotating shaft, so called from a Latin word meaning "turning around." On this verge were fastened two flat projections called pallets, diverging from each other at about an angle of one hundred degrees. The width between the pallets, from center to center of each, was equal to the diameter of the wheel, so that one would mesh with the teeth at the top of the escape-wheel and the other with the teeth at the bottom.

de Vick's Clock


Now, if the upper pallet were between the teeth at the top of the wheel, the pressure of the wheel trying to turn would push it away until the teeth were set free. But, in so doing, it would cause the verge to turn and bring the lower pallet between the teeth at the bottom of the wheel. And since the bottom of the wheel was, of course, traveling in the opposite direction from the top, the action would be reversed, and the lower pallet would be pushed away, bringing the upper one back between the teeth of the wheel again; and so on, "tick-tock," the wheel moving a little way each time, and the pallets alternately catching and holding it from going too far.

The device was kept running slowly by means of a cross-bar called a "foliot," fastened across the top of the verge in the shape of a T, and having weights on its two ends. When this weighted bar was set turning in one direction, it would, of course, resist being suddenly stopped and started turning the other way, as it was constantly made to do. And this furnished the regulating action which retarded the motion of the works and kept them from running down.

This involves the principle of the modern balance-wheel in both watches and clocks, which is that of inertia; the rim of the balance-wheel represents the weights on the bar that resist the pull of the pallets. A vital improvement, however, is the interception of the hair spring which gives elasticity to the pull and thus supplies the elements of precision and refinement. The inertia of the balance-wheel is gauged by the weight of the rim and its distance from the center; and the last refinement of regulation of the mechanism is produced by moving the tiny screws on the periphery of this wheel outward or inward.

We shall see later how this old escapement was in principle much like the improved forms in use to-day. It was as quaint and clumsy an affair as the first automobile or the first steam-engine. But, like them, it was a great invention, destined to achieve great results. For it was the means of making a machine keep time. And every clock and watch in use to-day depends for its usefulness upon a similar device. The tick is the first thing we think of in connection with a clock; and it is the most essential thing also, because it is the escapement which does the ticking.

 

This old clock of de Vick's also struck the hours upon a bell and in very much the same way as modern clocks are made to do. But the mechanical means by which it did so are too complicated to be easily described here. And indeed it is unnecessary to do so, since the bell is far less important. A clock need not strike, but it must keep time.

On the fearsome eve of St. Bartholomew, therefore, and again within the past generation, the clanging of this old clock's bell was brought about by the whirling gears and ponderous weights of an early craftsman who wrought his work into the ages.

As already stated, de Vick's mechanism embodied mechanical principles which, although greatly developed and improved, are employed even at the present day. All the essentials of a clock are there; the motive power – the descent of a massive weight – is now replaced by a slender spring; the train of gears by which this motion is reduced and communicated, are cut to-day with the extreme accuracy of modern machine work; the hand moving around the dial is now accompanied by a longer, swifter hand to tell the minutes; the escapement which by checking the motive power while yet allowing it to move on step by step, retards and regulates – even the numbered striking of the unchanging hours.

De Vick's old clock may have been a crude machine – it certainly was a poor timekeeper – but it was the sturdy ancestor of all those myriad tribes of clocks and watches which warn us solemnly from our towers, chime to us from our mantels, or, nestling snugly in our pockets, or clinging to our wrists, help us to maintain our efficiency in the complexities of modern life. The mechanism employed by de Vick was retained without any improvement of importance in all the time-pieces of the next three hundred years. The foliot escapement, especially, remained in use much longer. Indeed, any modern watchmaker would recognize that it was practically a horizontal balance-wheel.

Long before it was improved upon, watches had been invented and clocks had everywhere become common. But we shall reserve the watch for the next chapter; for the moment, our concern is with clocks alone.

The disadvantage of the medieval clock was its inaccuracy. This was due first to crude workmanship and unnecessary friction; but that trouble was presently overcome, for the medieval mechanic could be as fine and accurate a workman as any modern. He had the artist's personal pride and pleasure in his skill, and also a great unhurried patience, somewhat hard for us to picture in this breathless age. At best, however, his work fell far short of the accuracy possible with modern machinery. Other important difficulties were found in the expansion and contraction of parts due to temperature variations, and the fact that the foliot balance was at its best only when running slowly. Altogether, then, these early clocks were easily surpassed in accuracy of timekeeping by a sun-dial or a good clepsydra.

The question arises, therefore, why this newcomer in the field of timekeeping, should have begun to displace the earlier devices. The clock was not yet a better timepiece than the sun-dial; why did it grow more common? Well, for one thing, people like novelties. For another, people loved their churches and lived by the chimes of distant bells; and the clock was by far the most practical striking device, whatever might be its faults in keeping time. But, what was most important of all, it was a machine, susceptible of infinite improvement and offering a field for endless ingenuity. It appealed to that inborn mechanical instinct by means of which mankind has wrought his mastery over the world.

We have seen how de Vick's clock contained, as it were, the germ of all our clocks. And, moreover, the medieval regarded machinery with profoundest awe. It is the unknown which awakes imagination. We wonder at the cathedrals of his day, but the medieval knew about cathedrals; he built them. Considering their comparatively cruder tools, lack of modern hoisting machinery, and so forth, their architectural and building abilities exceeded even those of to-day. On the other hand, a locomotive or a modern watch, such as we glance at without special notice, would have appeared to him the product of sheer sorcery, too wonderful to be the work of human hands.

The Middle Ages could not much improve their clock without some radical invention; and such a mechanical type of invention was yet the province of but few minds. The typical craftsman could merely make the clock more convenient, more decorative, and more wonderful. To this work, he and his fellows addressed themselves with all of their patient skill and their endless ingenuity for ornamentation.

They made clocks for their churches and public buildings, and elaborated them with intricate mechanical devices. The old "Jacks" that struck the bells were only a beginning. They made clocks for their kings and wealthy nobles, adorning them with all the richness that an artist could design and a skilful jeweler execute. They made clocks even for ordinary domestic use so quaint in design and so clever in workmanship that we exhibit them to-day in our museums. One difficulty in determining the date of the first invention is that long before the days of de Vick and Lightfoot, machines were made to show the day of the week and month and to imitate the movements of the stars; and the first horological records may refer to clock-works of this kind.

The famous clock of Strassburg Cathedral shows the extreme to which the medieval craftsman carried this kind of ingenuity. It was originally put up in 1352 and has been twice rebuilt, each time with greater elaboration. It is three stories high and stands against the wall somewhat in the shape of a great altar with three towers. Among its movements are a celestial globe showing the positions of the sun, moon, and stars, a perpetual calendar, a device for predicting eclipses and a procession of figures representing the pagan gods from whom the days of the week are named. There are devices for showing the age and phases of the moon and other astronomical events. The hours are struck by a succession of automatic figures, and at the stroke of noon a cock, perched upon one of the towers, flaps his wings, ruffles his neck, and crows three times. This clock still remains, having last been rebuilt in the four years 1838 to 1842. But its chief interest is that of a mechanical curiosity. It keeps no better time than a common alarm-clock, nor ever did. And in beauty as well as usefulness, it has been surpassed many times by later and simpler structures.

For the first really important improvement in clock making we must pass to the latter end of the sixteenth century. The Italian Renaissance with its great impulse to art and science has come and gone, and the march of events has brought us well into the modern world. America had been discovered a century and is beginning to be colonized. Spain is trying to found a world empire upon blood and gold and the tortures of the Inquisition. England is at the height of the great Elizabethan period. It is the time of Drake and Shakespeare and Sir Walter Raleigh.

At this period of intellectual awakening, a remarkable young man steps upon the scene. In 1564, the year in which the wonderful Englishman, Shakespeare, first saw the light of day, the scarcely less wonderful Italian, Galileo, was born in Pisa. He was gifted with keen eyes and a swift, logical mind, which left its impress upon so many subjects of human thought and speculation that we are tempted to stop as with Archimedes and trace his history. But, one single incident must suffice.