Kostenlos

Time and Tide: A Romance of the Moon

Text
0
Kritiken
Als gelesen kennzeichnen
Schriftart:Kleiner AaGrößer Aa

LECTURE II

Starting from that fitting commencement of earth-moon history which the critical epoch affords, we shall now describe the dynamical phenomena as the tidal evolution progressed. The moon and the earth initially moved as a solid body, each bending the same face towards the other; but as the moon retreated, and as tides began to be raised on the earth, the length of the day began to increase, as did also the length of the month. We know, however, that the month increased more rapidly than the day, so that a time was reached when the month was twice as long as the day; and still both periods kept on increasing, but not at equal rates, for in progress of time the month grew so much more rapidly than the day, that many days had to elapse while the moon accomplished a single revolution. It is, however, only necessary for us to note those stages of the mighty progress which correspond to special events. The first of such stages was attained when the month assumed its maximum ratio to the day. At this time, the month was about twenty-nine days, and the epoch appears to have occurred at a comparatively recent date if we use such standards of time as tidal evolution requires; though measured by historical standards, the epoch is of incalculable antiquity. I cannot impress upon you too often the enormous magnitude of the period of time which these phenomena have required for their evolution. Professor Darwin's theory affords but little information on this point, and the utmost we can do is to assign a minor limit to the period through which tidal evolution has been in progress. It is certain that the birth of the moon must have occurred at least fifty million years ago, but probably the true period is enormously greater than this. If indeed we choose to add a cipher or two to the figure just printed, I do not think there is anything which could tell us that we have over-estimated the mark. Therefore, when I speak of the epoch in which the month possessed the greatest number of days as a recent one, it must be understood that I am merely speaking of events in relation to the order of tidal evolution. Viewed from this standpoint, we can show that the epoch is a recent one in the following manner. At present the month consists of a little more than twenty-seven days, but at this maximum period to which I have referred the month was about twenty-nine days; from that it began to decline, and the decline cannot have proceeded very far, for even still there are only two days less in the month than at the time when the month had the greatest number of days. It thus follows that the present epoch—the human epoch, as we may call it—in the history of the earth has fallen at a time when the progress of tidal evolution is about half-way between the initial and the final stage. I do not mean half-way in the sense of actual measurement of years; indeed, from this point it would seem that we cannot yet be nearly half-way, for, vast as are the periods of time that have elapsed since the moon first took its departure from the earth, they fall far short of that awful period of time which will intervene between the present moment and the hour when the next critical state of earth-moon history shall have been attained. In that state the day is destined once again to be equal to the month, just as was the case in the initial stage. The half-way stage will therefore in one sense be that in which the proportion of the month to the day culminates. This is the stage which we have but lately passed; and thus it is that at present we may be said to be almost half-way through the progress of tidal evolution.

My narrative of the earth-moon evolution must from this point forward cease to be retrospective. Having begun at that critical moment when the month and day were first equal, we have traced the progress of events to the present hour. What we have now to say is therefore a forecast of events yet to come. So far as we can tell, no agent is likely to interfere with the gradual evolution caused by the tides, which dynamical principles have disclosed to us. As the years roll on, or perhaps, I should rather say, as thousands of years and millions of years roll on, the day will continue to elongate, or the earth to rotate more slowly on its axis. But countless ages must elapse before another critical stage of the history shall be reached. It is needless for me to ponder over the tedious process by which this interesting epoch is reached. I shall rather sketch what the actual condition of our system will be when that moment shall have arrived. The day will then have expanded from the present familiar twenty-four hours up to a day more than twice, more than five, even more than fifty times its present duration. In round numbers, we may say that this great day will occupy one thousand four hundred of our ordinary hours. To realize the critical nature of the situation then arrived at, we must follow the corresponding evolution through which the moon passes. From its present distance of two hundred and forty thousand miles, the moon will describe an ever-enlarging orbit; and as it does so the duration of the month will also increase, until at last a point will be reached when the month has become more than double its present length, and has attained the particular value of one thousand four hundred hours. We are specially to observe that this one-thousand four-hundred-hour month will be exactly reached when the day has also expanded to one thousand four hundred hours; and the essence of this critical condition, which may be regarded as a significant point of tidal evolution, is that the day and the month have again become equal. The day and the month were equal at the beginning, the day and the month will be equal at the end. Yet how wide is the difference between the beginning and the end. The day or the month at the end is some hundreds of times as long as the month or the day at the beginning.

I have already fully explained how, in any stage of the evolutionary progress in which the day and the month became equal, the energy of the system attained a maximum or a minimum value. At the beginning the energy was a maximum; at the end the energy will be a minimum. The most important consequences follow from this consideration. I have already shown that a condition of maximum energy corresponded to dynamic instability. Thus we saw that the earth-moon history could not have commenced without the intervention of some influence other than tides at the beginning. Now let us learn what the similar doctrine has to tell us with regard to the end. The condition then arrived at is one of dynamical stability; for suppose that the system were to receive a slight alteration, by which the moon went out a little further, and thus described a larger orbit, and so performed more than its share of the moment of spin. Then the earth would have to do a little less spinning, because, under all circumstances, the total quantity of spin must be preserved unaltered. But the energy being at a minimum, such a small displacement must of course produce a state of things in which the energy would be increased. Or if we conceived the moon to come in towards the earth, the moon would then contribute less to the total moment of momentum. It would therefore be incumbent on the earth to do more; and accordingly the velocity of the earth's rotation would be augmented. But this arrangement also could only be produced by the addition of some fresh energy to the system, because the position from which the system is supposed to have been disturbed is one of minimum energy.

No disturbance of the system from this final position is therefore conceivable, unless some energy can be communicated to it. But this will demonstrate the utter incompetency of the tides to shift the system by a hair's breadth from this position; for it is of the essence of the tides to waste energy by friction. And the transformations of the system which the tides have caused are invariably characterized by a decline of energy, the movements being otherwise arranged so that the total moment of momentum shall be preserved intact. Note, how far we were justified in speaking of this condition as a final one. It is final so far as the lunar tides are concerned; and were the system to be screened from all outer interference, this accommodation between the earth and the moon would be eternal.

There is indeed another way of demonstrating that a condition of the system in which the day has assumed equality with the month must necessarily be one of dynamical equilibrium. We have shown that the energy which the tides demand is derived not from the mere fact that there are high tides and low tides, but from the circumstance that these tides do rise and fall; that in falling and rising they do produce currents; and it is these currents which generate the friction by which the earth's velocity is slowly abated, its energy wasted, and no doubt ultimately dissipated as heat. If therefore we can make the ebbing and the flowing of the tides to cease, then our argument will disappear. Thus suppose, for the sake of illustration, that at a moment when the tides happened to be at high water in the Thames, such a change took place in the behaviour of the moon that the water always remained full in the Thames, and at every other spot on the earth remained fixed at the exact height which it possessed at this particular moment. There would be no more tidal friction, and therefore the system would cease to course through that series of changes which the existence of tidal friction necessitates.

But if the tide is always to be full in the Thames, then the moon must be always in the same position with respect to the meridian, that is, the moon must always be fixed in the heavens over London. In fact, the moon must then revolve around the earth just as fast as London does—the month must have the same length as the day. The earth must then show the same face constantly to the moon, just as the moon always does show the same face towards the earth; the two globes will in fact revolve as if they were connected with invisible bonds, which united them into a single rigid body.

 

We need therefore feel no surprise at the cessation of the progress of tidal evolution when the month and the day are equal, for then the movement of moon-raised tides has ceased. No doubt the same may be said of the state at the beginning of the history, when the day and the month had the brief and equal duration of a few hours. While the equality of the two periods lasted there could be no tides, and therefore no progress in the direction of tidal evolution. There is, however, the profound difference of stability and instability between the two cases; the most insignificant disturbance of the system at the initial stage was sufficient to precipitate the revolving moon from its condition of dynamical equilibrium, and to start the course of tidal evolution in full vigour. If, however, any trifling derangement should take place in the last condition of the system, so that the month and the day departed slightly from equality, there would instantly be an ebbing and a flowing of the tides; and the friction generated by these tides would operate to restore the equality because this condition is one of dynamical stability.

It will thus be seen with what justice we can look forward to the day and month each of fourteen hundred hours as a finale to the progress of the luni-tidal evolution. Throughout the whole of this marvellous series of changes it is always necessary to remember the one constant and invariable element—the moment of momentum of the system which tides cannot alter. Whatever else the friction can have done, however fearful may have been the loss of energy by the system, the moment of momentum which the system had at the beginning it preserves unto the end. This it is which chiefly gives us the numerical data on which we have to rely for the quantitative features of tidal evolution.

We have made so many demands in the course of these lectures on the capacity of tidal friction to accomplish startling phenomena in the evolution of the earth-moon system, that it is well for us to seek for any evidence that may otherwise be obtainable as to the capacity of tides for the accomplishment of gigantic operations. I do not say that there is any doubt which requires to be dispelled by such evidence, for as to the general outlines of the doctrine of tidal evolution which has been here sketched out there can be no reasonable ground for mistrust; but nevertheless it is always desirable to widen our comprehension of any natural phenomena by observing collateral facts. Now there is one branch of tidal action to which I have as yet only in the most incidental way referred. We have been speaking of the tides in the earth which are made to ebb and flow by the action of the moon; we have now to consider the tides in the moon, which are there excited by the action of the earth. For between these two bodies there is a reciprocity of tidal-making energy—each of them is competent to raise tides in the other. As the moon is so small in comparison with the earth, and as the tides on the moon are of but little significance in the progress of tidal evolution, it has been permissible for us to omit them from our former discussion. But it is these tides on the moon which will afford us a striking illustration of the competency of tides for stupendous tasks. The moon presents a monument to show what tides are able to accomplish.

Fig. 3.—The Moon.


I must first, however, explain a difficulty which is almost sure to suggest itself when we speak of tides on the moon. I shall be told that the moon contains no water on its surface, and how then, it will be said, can tides ebb and flow where there is no sea to be disturbed? There are two answers to this difficulty; it is no doubt true that the moon seems at present entirely devoid of water in so far as its surface is exposed to us, but it is by no means certain that the moon was always in this destitute condition. There are very large features marked on its map as “seas”; these regions are of a darker hue than the rest of the moon's surface, they are large objects often many hundreds of miles in diameter, and they form, in fact, those dark patches on the brilliant surface which are conspicuous to the unaided eye, and are represented in Fig. 3. Viewed in a telescope these so-called seas, while clearly possessing no water at the present time, are yet widely different from the general aspect of the moon's surface. It has often been supposed that great oceans once filled these basins, and a plausible explanation has even been offered as to how the waters they once contained could have vanished. It has been thought that as the mineral substances deep in the interior of our satellite assumed the crystalline form during the progress of cooling, the demand for water of crystallization required for incorporation with the minerals was so great that the oceans of the moon became entirely absorbed. It is, however, unnecessary for our present argument that this theory should be correct. Even if there never was a drop of water found on our satellite, the tides in its molten materials would be quite sufficient for our purpose; anything that tides could accomplish would be done more speedily by vast tides of flowing lava than by merely oceanic tides.

There can be no doubt that tides raised on the moon by the earth would be greater than the tides raised on the earth by the moon. The question is, however, not a very simple one, for it depends on the masses of both bodies as well as on their relative dimensions. In so far as the masses are concerned, the earth being more than eighty times as heavy as the moon, the tides would on this account be vastly larger on the moon than on the earth. On the other hand, the moon's diameter being much less than that of the earth, the efficiency of a tide-producing body in its action on the moon would be less than that of the same body at the same distance in its action on the earth; but the diminution of the tides from this cause would be not so great as their increase from the former cause, and therefore the net result would be to exhibit much greater tides on the moon than on the earth.

Suppose that the moon had been originally endowed with a rapid movement of rotation around its axis, the effect of the tides on that rotation would tend to check its velocity just in the same way as the tides on the earth have effected a continual elongation of the day. Only as the tides on the moon were so enormously great, their capacity to check the moon's speed would have corresponding efficacy. In addition to this, the mass of the moon being so small, it could only offer feeble resistance to the unceasing action of the tide, and therefore our satellite must succumb to whatever the tides desired ages before our earth would have been affected to a like extent. It must be noticed that the influence of the tidal friction is not directed to the total annihilation of the rotation of the two bodies affected by it; the velocity is only checked down until it attains such a point that the speed in which each body rotates upon its axis has become equal to that in which it revolves around the tide-producer. The practical effect of such an adjustment is to make the tide-agitated body turn a constant face towards its tormentor.

I may here note a point about which people sometimes find a little difficulty. The moon constantly turns the same face towards the earth, and therefore people are sometimes apt to think that the moon performs no rotation whatever around its own axis. But this is indeed not the case. The true inference to be drawn from the constant face of the moon is, that the velocity of rotation about its own axis is equal to that of its rotation around the earth; in fact, the moon revolves around the earth in twenty-seven days, and its rotation about its axis is performed in twenty-seven days also. You may illustrate the movement of the moon around the earth by walking around a table in a room, keeping all the time your face turned towards the table; in such a case as this you not only perform a motion of revolution, but you also perform a rotation in an equal period. The proof that you do rotate is to be found in the fact that during the movement your face is being directed successively to all the points of the compass. There is no more singular fact in the solar system than the constancy of the moon's face to the earth. The periods of rotation and revolution are both alike; if one of these periods exceeded the other by an amount so small as the hundredth part of a second, the moon would in the lapse of ages permit us to see that other side which is now so jealously concealed. The marvellous coincidence between these two periods would be absolutely inexplicable, unless we were able to assign it to some physical cause. It must be remembered that in this matter the moon occupies a unique position among the heavenly host. The sun revolves around on its axis in a period of twenty-five or twenty-six days—thus we see one side of the sun as frequently as we see the other. The side of the sun which is turned towards us to-day is almost entirely different from that we saw a fortnight ago. Nor is the period of the sun's rotation to be identified with any other remarkable period in our system. If it were equal to the length of the year, for instance, or if it were equal to the period of any of the other planets, then it could hardly be contended that the phenomenon as presented by the moon was unique; but the sun's period is not simply related, or indeed related at all, to any of the other periodic times in the system. Nor do we find anything like the moon's constancy of face in the behaviour of the other planets. Jupiter turns now one face to us and then another. Nor is his rotation related to the sun or related to any other body, as our moon's motion is related to us. It has indeed been thought that in the movements of the satellites of Jupiter a somewhat similar phenomenon may be observed to that in the motion of our own satellite. If this be so, the causes whereby this phenomenon is produced are doubtless identical in the two cases.

So remarkable a coincidence as that which the moon's motion shows could not reasonably be explained as a mere fortuitous circumstance; nor need we hesitate to admit that a physical explanation is required when we find a most satisfactory one ready for our acceptance, as was originally pointed out by Helmholtz.

There can be no doubt whatever that the constancy of the moon's face is the work of ancient tides, which have long since ceased to act. We have shown that if the moon's rotation had once been too rapid to permit of the same face being always directed towards us, the tides would operate as a check by which the velocity of that rotation would be abated. On the other hand, if the moon rotated so slowly that its other face would be exposed to us in the course of the revolution, the tides would then be dragged violently over its surface in the direction of its rotation; their tendency would thus be to accelerate the speed until the angular velocity of rotation was equal to that of revolution. Thus the tides would act as a controlling agent of the utmost stringency to hurry the moon round when it was not turning fast enough, and to arrest the motion when going too fast. Peace there would be none for the moon until it yielded absolute compliance to the tyranny of the tides, and adjusted its period of rotation with exact identity to its period of revolution. Doubtless this adjustment was made countless ages ago, and since that period the tides have acted so as to preserve the adjustment, as long as any part of the moon was in a state sufficiently soft or fluid to respond to tidal impression. The present state of the moon is a monument to which we may confidently appeal in support of our contention as to the great power of the tides during the ages which have passed; it will serve as an illustration of the future which is reserved for our earth in ages yet to come, when our globe shall have also succumbed to tidal influence.

It is owing to the smallness of the moon relatively to the earth that the tidal process has reached a much more advanced stage in the moon than it has on the earth; but the moon is incessant in its efforts to bring the earth into the same condition which it has itself been forced to assume. Thus again we look forward to an epoch in the inconceivably remote future when tidal thraldom shall be supreme, and when the earth shall turn the same face to the moon, as the moon now turns the same face to the earth.

 

In the critical state of things thus looming in the dim future, the earth and the moon will continue to perform this adjusted revolution in a period of about fourteen hundred hours, the two bodies being held, as it were, by invisible bands. Such an arrangement might be eternal if there were no intrusion of tidal influence from any other body; but of course in our system as we actually find it the sun produces tides as well as the moon; and the solar tides being at present much less than those originated by the moon, we have neglected them in the general outlines of the theory. The solar tides, however, must necessarily have an increasing significance. I do not mean that they will intrinsically increase, for there seems no reason to apprehend any growth in their actual amount; it is their relative importance to the lunar tides that is the augmenting quantity. As the final state is being approached, and as the velocity of the earth's rotation is approximating to the angular velocity with which the moon revolves around it, the ebbing and the flowing of the lunar tides must become of evanescent importance; and this indeed for a double reason, partly on account of the moon's greatly augmented distance, and partly on account of the increasing length of the lunar day, and the extremely tardy movements of ebb and flow that the lunar tides will then have. Thus the lunar tides, so far as their dynamical importance is concerned, will ultimately become zero, while the solar tides retain all their pristine efficiency.

We have therefore to examine the dynamical effects of solar tides on the earth and moon in the critical stage to which the present course of things tends. The earth will then rotate in a period of about fifty-seven of its present days; and considering that the length of the day, though so much greater than our present day, is still much less than the year, it follows that the solar tides must still continue so as to bring the earth's velocity of rotation to a point even lower than it has yet attained. In fact, if we could venture to project our glance sufficiently far into the future, it would seem that the earth must ultimately have its velocity checked by the sun-raised tides, until the day itself had become equal to the year. The dynamical considerations become, however, too complex for us to follow them, so that I shall be content with merely pointing out that the influence of the solar tides will prevent the earth and moon from eternally preserving the relations of bending the same face towards each other; the earth's motion will, in fact, be so far checked, that the day will become longer than the month.

Thus the doctrine of tidal evolution has conducted us to a prospect of a condition of things which will some time be reached, when the moon will have receded to a distance in which the month shall have become about fifty-seven days, and when the earth around which this moon revolves shall actually require a still longer period to accomplish its rotation on its axis. Here is an odd condition for a planet with its satellite; indeed, until a dozen years ago it would have been pronounced inconceivable that a moon should whirl round a planet so quickly that its journey was accomplished in less than one of the planet's own days. Arguments might be found to show that this was impossible, or at least unprecedented. There is our own moon, which now takes twenty-seven days to go round the earth; there is Jupiter, with four moons, and the nearest of these to the primary goes round in forty-two and a half hours. No doubt this is a very rapid motion; but all those matters are much more lively with Jupiter than they are here. The giant planet himself does not need ten hours for a single rotation, so that you see his nearest moon still takes between two and three Jovian days to accomplish a single revolution. The example of Saturn might have been cited to show that the quickest revolution that any satellite could perform must still require at least twice as long as the day in which the planet performed its rotation. Nor could the rotation of the planets around the sun afford a case which could be cited. For even Mercury, the nearest of all the planets to the sun of which the existence is certainly known, and therefore the most rapid in its revolution, requires eighty-eight days to get round once; and in the mean time the sun has had time to accomplish between three and four rotations. Indeed, the analogies would seem to have shown so great an improbability in the conclusion towards which tidal evolution points, that they would have contributed a serious obstacle to the general acceptance of that theory.

But in 1877 an event took place so interesting in astronomical history, that we have to look back to the memorable discovery of Uranus in 1781 before we can find a parallel to it in importance. Mars had always been looked upon as one of the moonless planets, though grounds were not wanting for the surmise that probably moons to Mars really existed. It was under the influence of this belief that an attempt was made by Professor Asaph Hall at Washington to make a determined search, and see if Mars might not be attended by satellites large enough to be discoverable. The circumstances under which this memorable inquiry was undertaken were eminently favourable for its success. The orbit of Mars is one which possesses an exceptionally high eccentricity; it consequently happens that the oppositions during which the planet is to be observed vary very greatly in the facilities they afford for a search like that contemplated by Professor Hall. It is obviously advantageous that the planet should be situated as near as possible to the earth, and in the opposition in 1877 the distance was almost at the lowest point it is capable of attaining; but this was not the only point in which Professor Hall was favoured; he had the use of a telescope of magnificent proportions and of consummate optical perfection. His observatory was also placed in Washington, so that he had the advantage of a pure sky and of a much lower latitude than any observatory in Great Britain is placed at. But the most conspicuous advantage of all was the practised skill of the astronomer himself, without which all these other advantages would have been but of little avail. Great success rewarded his well-designed efforts; not alone was one satellite discovered which revolved around the planet in a period conformable with that of other similar cases, but a second little satellite was found, which accomplished its revolution in a wholly unexpected and unprecedented manner. The day of Mars himself, that is, the period in which he can accomplish a rotation around his axis, very closely approximates to our own day, being in fact half an hour longer. This little satellite, the inner and more rapid of the pair, requires for a single revolution a period of only seven hours thirty-nine minutes, that is to say, the little body scampers more than three times round its primary before the primary itself has finished one of its leisurely rotations. Here was indeed a striking fact, a unique fact in our system, which riveted the attention of astronomers on this most beautiful discovery.

Weitere Bücher von diesem Autor